Fahimi's racerunner, a new species of the genus Eremias Fitzinger, 1834 (Sauria: Lacertidae) from Iran

OMID MOZAFFARI ${ }^{1, *}$, FARAHAM AHMADZADEH ${ }^{2,3}$ \& REIHANEH SABERI-PIROOZ ${ }^{2,4}$
${ }^{1}$ Aria Herpetological Institute, No. 1, Parastoo 4 St., Shahrak-e-Homa, Ashrafi-e-Esfehani Highway, Tehran, Iran
${ }^{2}$ Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, 1983963113, Iran
${ }^{3}$ シ" F_ahmadzade@sbu.ac.ir; © https://orcid.org/0000-0001-7152-8484
4 =" R_saberipirooz@sbu.ac.ir; © https://orcid.org/0000-0002-9210-3570
*Corresponding author. $=$ = o.mozaffari@gmail.com; © https://orcid.org/0000-0003-0147-7196; Phone: +989125832412

Abstract

We describe a new species of Lacertid lizard of the genus Eremias from the border of the northeastern side of Markazi Province to the western side of Tehran Province in Iran. Eremias fahimii sp. nov. is part of the Eremias subgenus (or morphotype) by virtue of lacking lateral fringes on the fourth toe, having movable eyelids, a lower nasal shield that rests on two supralabials, and ventral plates arranged in oblique longitudinal rows. It can be further differentiated from previously described species assigned to this morphotype by the absence of distinctly keeled upper caudal scales, gular scales that do not extend to the second inframaxiallary scales, shape and relative size of frontoparietals, parietal and parietals, scale counts and absence of lateral color ocellus. In addition, the molecular phylogeny of the most common Iranian racerunners including Eremias fahimii sp. nov. was studied using mitochondrial Cytochrome b (Cyt b) and 12S ribosomal RNA (12S) genes. Our results support the validation of the new species which depicts a sister group relationship to E. persica. Of the 20 species of Eremias known from Iran, E. fahimii sp. nov. is the seventh endemic species along with E. andersoni, E. isfahanica, E. lalezharica, E. kavirensis, E. montana and E. papenfussi. Despite the fact that up to now E. fahimii sp. nov. is only known from the type locality, it is highly probable that it also occurs in Tehran, Alborz, Qom, Qazvin and Zanjan Provinces due to topological characteristics and habitat similarities in these areas.

Key words: Reptilia, Iran, Markazi, Tehran, Endemic, Eremias fahimii sp. nov.

Institutional abbreviations: ZFMK, Zoologisches Forschungsmuseum Alexander Koenig (Bonn, Germany).

Introduction

Eremias Fitzinger, 1834 generally known as racerunner lizards, belongs to the family Lacertidae (Arnold et al., 2007). The genus consists of 38 species that inhabit steppes and deserts of the Near East, Middle and Central Asia (Anderson, 1999; Uetz \& Hallermann, 2020). They originated at about 9.9 million years ago and diversified between the Late Miocene and the Pleistocene (Guo et al., 2011). Szczerbak (1974) considered Eremias velox the type species of genus Eremias, and the genus was subdivided into five distinct subgenera: Eremias Fitzinger in Wiegmann, 1834 (group E. velox), Rhabderemias Lantz, 1928 (group Eremias scripta-Eremias lineolata), Ommateremias Lantz, 1928 (group Eremias arguta), Scapteira Fitzinger in Wiegmann, 1834 (group Eremias grammica), and Pareremias Szczerbak, 1973 (group Eremias multiocellata). These five subgenera were supported by Arnold (1986) on the basis of the hemipenial characters. Among these five recognized subgenera, Iranian Eremias can be assigned to four of them (Szczerbak, 1974; Anderson, 1999): Scapteira, Ommateremias, Rhabderemias, and Eremias. Members of Ommateremias subgenus are medium to large size lizards with an average snout-vent length (SVL) of about 80 mm . Both juveniles and adults have dark edged light spots on the back; but rarely they fused together and shape bars in adults. Their single large subocural scale is in contact with supralabial scale(s). They share this character only with the subgenus Scapteira. Members of Rhabderemias subgenus are small lacertid lizards with the maximum SVL of
about 60 mm . Both juveniles and adults have dark longitudinal stripes on the back. Their single large subocural scale is always in contact with the mouth. They share this character only with the subgenus Eremias. Members of Eremias subgenus are medium to large size lizards with an average SVL of about 80 mm . Juveniles have dark longitudinal stripes on the back, the same as the subgenus Rhabderemias. But these stripes will be broken down into dark spots or even disappear in adults. They have no digital fringes and their single large subocural scale is always in contact with the mouth. Members of the subgenus Scapteira are relatively large lacertids with a SVL of up to 100 mm . Both juveniles and adults have wavy dark transverse bars or reticulum on the back. They live in loose sands and due to adaptation to such environment, they all have large fringes in their toes, remarkable in both lateral and medial sides of the fourth toe. Guo et al. (2011) showed that these subgenera seem not to be monophyletic. Nineteen species of Eremias are known from Iran, six of which are endemic to the country (Mozaffari et al., 2016; Rastegar-Pouyani et al., 2016; Uetz \& Hallermann, 2020). In this study, we report and describe a seventh endemic species of Eremias from Iran, using both morphological and molecular approaches to validate the new species.

Materials and methods

Two specimens (ZFMK102757(q), ZFMK102758(q)) of new population were collected from the border of the northeastern side of Markazi Province of Iran (around Jaroo Mountain), $35^{\circ} 40^{\prime} 08^{\prime \prime} \mathrm{N}, 50^{\circ} 42^{\prime} 24^{\prime \prime} \mathrm{E}$ at an elevation of $1,173 \mathrm{~m}$ a.s. 1 by senior author (Fig. 1). The specimens were subjected to hibernation at $4^{\circ} \mathrm{C}$ for 10 hours and preserved in 80% ethanol solution for further morphological examinations. For phylogenetic analysis, blood samples were taken from each specimen, and then kept in a freezer at $-20^{\circ} \mathrm{C}$ for long term maintenance.

FIGURE 1. Type locality of Eremias fahimii sp. nov. along with localities of all nine other Eremias species used in this study. For more details, see Table 1.
TABLE 1. Data set of ten species of Eremias and outgroup were used in this study including museum number, locality, coordinates and GenBank accession numbers for the Cyt b and 12S genes.

Species	Museum number	Locality	Coordinates	GenBank accession numbers		Reference
				Cyt b	12S	
Eremias fahimii sp. nov.	ZFMK102757	Iran, around Jaroo Mountain	$35^{\circ} 40^{\prime} 08^{\prime \prime} \mathrm{N}, 50^{\circ} 42^{\prime} 24^{\prime \prime} \mathrm{E}$	MT249277	MT233383	This study
Eremias fahimii sp. nov.	ZFMK102758	Iran, around Jaroo Mountain	$35^{\circ} 40^{\prime} 08^{\prime \prime} \mathrm{N}, 50^{\circ} 42^{\prime} 24^{\prime \prime} \mathrm{E}$	MT249278	MT233382	This study
Eremias isfahanica	SUHC 3009	Iran, 45 km NW Isfahan	$32^{\circ} 52^{\prime} 12.2{ }^{\prime \prime} \mathrm{N} ; 51^{\circ} 06{ }^{\prime} 41.2{ }^{\prime \prime} \mathrm{E}$	KP317958	KP317970	Rastegar-Pouyani et al. (2016)
Eremias isfahanica	SUHC 3011	Iran, 45 km NW Isfahan	$32^{\circ} 52^{\prime} 12.2$ " ${ }^{\prime \prime} ; 51^{\circ} 06{ }^{\prime} 41.2{ }^{\prime \prime} \mathrm{E}$	KP317959	KP317971	Rastegar-Pouyani et al. (2016)
Eremias isfahanica	SUHC 3012	Iran, 45 km NW Isfahan	$32^{\circ} 52^{\prime} 12.2$ " ${ }^{\prime \prime} ; 51^{\circ} 06{ }^{\prime} 41.2{ }^{\prime \prime} \mathrm{E}$	KP317957	KP317969	Rastegar-Pouyani et al. (2016)
Eremias isfahanica	SUHC 3014	Iran, 45 km NW Isfahan	$32^{\circ} 52^{\prime} 12.2$ " ${ }^{\prime \prime} ; 51^{\circ} 06{ }^{\prime} 41.2{ }^{\prime \prime} \mathrm{E}$	KP317961	KP317973	Rastegar-Pouyani et al. (2016)
Eremias isfahanica	SUHC 3017	Iran, 45 km NW Isfahan	$32^{\circ} 52^{\prime} 12.2$ " ${ }^{\prime} ; 51^{\circ} 06{ }^{\prime} 41.2{ }^{\prime \prime} \mathrm{E}$	KP317960	KP317972	Rastegar-Pouyani et al. (2016)
Eremias papenfussi	SUHC 1127	Iran, North of Tehran	$35^{\circ} 47^{\prime} 44.9$ " $\mathrm{N} ; 51^{\circ} 14^{\prime} 20.2$ " E	KP317962	KP317974	Rastegar-Pouyani et al. (2016)
Eremias papenfussi	SUHC 1128	Iran, North of Tehran	$35^{\circ} 47^{\prime} 44.9$ " $\mathrm{N} ; 51^{\circ} 14^{\prime} 20.2{ }^{\prime \prime} \mathrm{E}$	KP317963	KP317975	Rastegar-Pouyani et al. (2016)
Eremias lalezharica	SUHC 151	Iran, Lalehzar Mountain	$29^{\circ} 29^{\prime} 27.9^{\prime \prime} \mathrm{N} ; 56^{\circ} 48^{\prime} 58.3$ " E	KJ468077	KJ468089	Rastegar-Pouyani et al. (2015)
Eremias lalezharica	SUHC 153	Iran, Lalehzar Mountain	29²9' $27.9^{\prime \prime}$ N; $56^{\circ} 48^{\prime} 58.3{ }^{\prime \prime}$ E	KJ468078	KJ468090	Rastegar-Pouyani et al. (2015)
Eremias lalezharica	SUHC 158	Iran, Lalehzar Mountain	29²9' 27.9 " ${ }^{\prime \prime}$; $56^{\circ} 48^{\prime} 58.3{ }^{\prime \prime}$ E	KJ468079	KJ468091	Rastegar-Pouyani et al. (2015)
Eremias lalezharica	SUHC 159	Iran, Lalehzar Mountain	$29^{\circ} 29^{\prime} 27.9^{\prime \prime} \mathrm{N} ; 56^{\circ} 48^{\prime} 58.3{ }^{\prime \prime} \mathrm{E}$	KJ468080	KJ468092	Rastegar-Pouyani et al. (2015)
Eremias suphani	SUHC 301	Iran, Chaldoran	$38^{\circ} 42^{\prime} 58.2$ " ${ }^{\prime \prime}$; 44³7' $55.6^{\prime \prime}$ E	KP317965	KP317977	Rastegar-Pouyani et al. (2016)
Eremias suphani	SUHC 302	Iran, Chaldoran	$38^{\circ} 42^{\prime} 58.2 \times \mathrm{N} ; 44^{\circ} 37^{\prime} 55.6^{\prime \prime} \mathrm{E}$	KP317964	KP317976	Rastegar-Pouyani et al. (2016)
Eremias montana	SUHC 216	Iran, NE of Kermanshah	$34^{\circ} 30^{\prime} 08.5$ " $\mathrm{N} ; 47^{\circ} 21^{\prime} 12.3{ }^{\prime \prime} \mathrm{E}$	FJ 416293	FJ445366	Rastegar-Pouyani et al. (2010)
Eremias montana	SUHC 217	Iran, NE of Kermanshah	$34^{\circ} 30^{\prime} 08.5^{\prime \prime} \mathrm{N} ; 47^{\circ} 21^{\prime} 12.3{ }^{\prime \prime} \mathrm{E}$	FJ 416294	FJ445367	Rastegar-Pouyani et al. (2010)
Eremias montana	SUHC 218	Iran, NE of Kermanshah	$34^{\circ} 30^{\prime} 08.5$ " $\mathrm{N} ; 47^{\circ} 21^{\prime} 12.3{ }^{\prime \prime} \mathrm{E}$	FJ 416295	FJ445368	Rastegar-Pouyani et al. (2010)
Eremias montana	SUHC 219	Iran, NE of Kermanshah	$34^{\circ} 30^{\prime} 08.5$ " $\mathrm{N} ; 47^{\circ} 21^{\prime} 12.3{ }^{\prime \prime} \mathrm{E}$	FJ 416296	FJ445369	Rastegar-Pouyani et al. (2010)
Eremias strauchi	SUHC 315	Iran, 44 km NW Marand	$38^{\circ} 33^{\prime} 59.3$ " $\mathrm{N} ; 45^{\circ} 18^{\prime} 37.2{ }^{\prime \prime} \mathrm{E}$	KJ468070	KJ468082	Rastegar-Pouyani et al. (2015)
Eremias strauchi	SUHC 317	Iran, 44 km NW Marand	$38^{\circ} 33^{\prime} 59.3$ " ${ }^{\prime}$; 45 ${ }^{\circ} 18^{\prime} 37.2{ }^{\prime \prime} \mathrm{E}$	JQ690099	JQ690168	Rastegar-Pouyani et al. (2012)

TABLE 1. (Continued)

Species	Museum number	Locality	Coordinates	GenBank accession numbers		Reference
				Cyt b	12 S	
Eremias strauchi	SUHC 318	Iran, 44 km NW Marand	$38^{\circ} 33^{\prime} 59.3{ }^{\prime \prime} \mathrm{N} ; 45^{\circ} 18^{\prime} 37.2{ }^{\prime \prime} \mathrm{E}$	KJ468072	KJ468084	Rastegar-Pouyani et al. (2015)
Eremias strauchi	SUHC 316	Iran, 44 km NW Marand	$38^{\circ} 33^{\prime} 59.3$ " $\mathrm{N} ; 45^{\circ} 18^{\prime} 37.2^{\prime \prime} \mathrm{E}$	KP317966	KP317978	Rastegar-Pouyani et al. (2016)
Eremias kopetdaghica	SUHC 351	Iran, Yengeje, Neyshabur, Khorasan	$36^{\circ} 46^{\prime} 10.2^{\prime \prime} \mathrm{N} ; 57^{\circ} 31^{\prime} 0.2^{\prime \prime} \mathrm{E}$	KJ468076	KJ468088	Rastegar-Pouyani et al. (2015)
Eremias kopetdaghica	SUHC 352	Iran, Yengeje, Neyshabur, Khorasan	$36^{\circ} 46^{\prime} 10.2^{\prime \prime} \mathrm{N} ; 57^{\circ} 31^{\prime} 0.2^{\prime \prime} \mathrm{E}$	KJ468075	KJ468087	Rastegar-Pouyani et al. (2015)
Eremias kopetdaghica	SUHC 353	Iran, Yengeje, Neyshabur, Khorasan	$36^{\circ} 46^{\prime} 10.2$ " $\mathrm{N} ; 57^{\circ} 31^{\prime} 0.2^{\prime \prime} \mathrm{E}$	KJ468073	KJ468085	Rastegar-Pouyani et al. (2015)
Eremias kopetdaghica	SUHC 354	Iran, Yengeje, Neyshabur, Khorasan	$36^{\circ} 46^{\prime} 10.2^{\prime \prime} \mathrm{N} ; 57^{\circ} 31^{\prime} 0.2^{\prime \prime} \mathrm{E}$	KJ468074	KJ468086	Rastegar-Pouyani et al. (2015)
Eremias persica	SUHC 172	Iran, Near Abadeh, North of Shiraz	$30^{\circ} 56{ }^{\prime} 37.7{ }^{\prime \prime} \mathrm{N} ; 52^{\circ} 55^{\prime} 58.2{ }^{\prime \prime} \mathrm{E}$	FJ416246	FJ445324	Rastegar-Pouyani et al. (2010)
Eremias persica	SUHC 173	Iran, Near Abadeh, North of Shiraz	$30^{\circ} 56{ }^{\prime} 37.7$ " $\mathrm{N} ; 52^{\circ} 55^{\prime} 58.2{ }^{\prime \prime} \mathrm{E}$	FJ416250	FJ445325	Rastegar-Pouyani et al. (2010)
Eremias persica	SUHC 174	Iran, Near Abadeh, North of Shiraz	$30^{\circ} 56^{\prime} 37.7{ }^{\prime \prime} \mathrm{N} ; 52^{\circ} 55^{\prime} 58.2{ }^{\prime \prime} \mathrm{E}$	FJ416252	FJ445326	Rastegar-Pouyani et al. (2010)
Eremias persica	SUHC 196	Iran, South of Neyshaboor, Khorasan	$36^{\circ} 06^{\prime} 15.6^{\prime \prime} \mathrm{N} ; 59^{\circ} 03^{\prime} 45.1 " \mathrm{E}$	FJ416243	FJ445320	Rastegar-Pouyani et al. (2010)
Eremias persica	SUHC 197	Iran, South of Neyshaboor, Khorasan	$36^{\circ} 06^{\prime} 15.6^{\prime \prime} \mathrm{N} ; 59^{\circ} 03^{\prime} 45.1 " \mathrm{E}$	FJ416245	FJ445321	Rastegar-Pouyani et al. (2010)
Eremias velox	SUHC 268	Iran, South of Tehran	$35^{\circ} 04^{\prime} 06.9^{\prime \prime} \mathrm{N} ; 51^{\circ} 46^{\prime} 57.5^{\prime \prime} \mathrm{E}$	JQ690195	JQ690127	Rastegar-Pouyani et al. (2012)
Eremias velox	SUHC 269	Iran, South of Tehran	$35^{\circ} 04^{\prime} 06.9^{\prime \prime} \mathrm{N} ; 51^{\circ} 46^{\prime} 57.5^{\prime \prime} \mathrm{E}$	JQ690196	JQ690128	Rastegar-Pouyani et al. (2012)
Eremias velox	SUHC 359	Iran, Around Gorgan	$36^{\circ} 48^{\prime} 25.8$ " $\mathrm{N} ; 54^{\circ} 29^{\prime} 58.7$ " E	JQ690194	JQ690126	Rastegar-Pouyani et al. (2012)
Mesalina watsonana	VAZ10	Iran	-	MH040049	MH039959	Sindaco et al. (2018)

Morphological characters. Morphometric characters including total length (TL) and snout to vent length (SVL) measured by using a 500-192 Mitutoyo digital caliper to the nearest 0.1 mm and 14 meristic characters including number of scales across mid-dorsum, number of longitudinal rows of ventral plates, number of transverse rows of ventral plates, total number of submaxillary shields, number of submaxillary shields that are in contact, total number of supralabials, number of supralabials anterior to subocular, number of supraocular, number of supraciliaris, number of gulars, number of collars, number of scales in the $10^{\text {th }}$ caudal annulus, number of femoral pores and number of scales between femoral pores examined by using an Aomekie 20X/40X Stereo Microscope.

Genetic study. Genomic DNA was extracted with the high-salt method (Sambrook \& Russell, 2001). Two mitochondrial genes fragments including Cytochrome b (Cyt b) (primers: Mtanew/Mtfsh) (Rastegar-Pouyani et al., 2013) and 12S ribosomal RNA (12S) (primers: 12Sa /12Sb) (Kocher et al., 1989) were used for PCR amplifications. The PCR mix contained $12.5 \mu \mathrm{l}$ of Mastermix Red (Ampliqon, Copenhagen, Denmark), $0.5 \mu \mathrm{l}$ of each primer (10 $\mathrm{pmol} / \mu \mathrm{l}$), $10.5 \mu \mathrm{l}$ of $\mathrm{ddH}_{2} \mathrm{O}$, and $1 \mu \mathrm{l}$ of DNA template ($50-100 \mathrm{ng}$) in a total volume of $25 \mu \mathrm{l}$. PCRs were performed under the following conditions, for Cyt b : initial denaturation at $94^{\circ} \mathrm{C}$ for 5 min , followed by 30 cycles of $94^{\circ} \mathrm{C}$ for $40 \mathrm{~s}, 48^{\circ} \mathrm{C}$ for $45 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 2 min , and finally, a further single step extension of $72^{\circ} \mathrm{C}$ for 10 min , for 12 S : initial denaturation at $92^{\circ} \mathrm{C}$ for 2 min , followed by 35 cycles of $92^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 50^{\circ} \mathrm{C}$ for $40 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 45 s , and finally, final extension of $72^{\circ} \mathrm{C}$ for 10 min . Subsequently, PCR products were visualized on a 1% agarose gel stained with Safe$\operatorname{Red}^{\mathrm{TM}}$. The proper amplicons were then purified and sequenced by Macrogene (Macrogene, Seoul, South Korea). Sequences were edited using CodonCode aligner V.9.0.1.X program (CodonCode Corporation, Dedham, MA, USA). Afterwards, sequences were submitted to GenBank.

Phylogenetic analyses. To clarify the phylogenetic assignment of the new species from Markazi Province, other nine species of Eremias were added to our dataset (Rastegar-Pouyani et al., 2010; Rastegar-Pouyani et al., 2012; Rastegar-Pouyani et al., 2015; Rastegar-Pouyani et al., 2016) (Table 1). Mesalina watsonana was used as outgroup. Datasets were aligned using MAFFT V. 6 (Katoh et al., 2002). MrModeltest 2.3 (Nylander, 2004) was used to determine the best nucleotide substitution model based on Akaike's Information Criterion (Akaike, 1974). The most appropriate model for the Cyt b and 12 S genes was the $\mathrm{GTR}+\mathrm{G}(\mathrm{G}=0.223$ and $\mathrm{G}=0.276$, respectively). Maximum Likelihood (ML) and Bayesian Inference (BI) analyses were inferred for the concatenated dataset (Cyt b and 12 S), including 940 bp comprising 35 individuals (33 specimens from nine Eremias species and two samples from the new species from Markazi Province). The ML tree was inferred using RAxML V.7.2 (Stamatakis, 2006) with 1,000 bootstrap pseudoreplications under the GTR + G model. BI was performed using MrBayes V.3.2 (Huelsenbeck \& Ronquist, 2001) using five independent runs, four chains with for 5 million generations. Subsampling parameters and trees were saved every 100 generation, which generated an output of 5×10^{4} trees. Eventually, 10% burn-in, equal to 5,000 trees, were discarded from the 50,001 samples subsampled during the analysis. Tracer V.1.7.1 (Rambaut et al., 2018) was used to assess convergence.

Uncorrected genetic distances between the Eremias species and the new species from Markazi Province were calculated based on Cyt b and 12S genes with Mega X (Kumar et al., 2018).

Results

Morphological characters. Morphological investigation demonstrated that the examined specimens had movable eyelids, a lower nasal shield that rests on two supralabials, and ventral plates arranged in oblique longitudinal rows. Variations in 16 morphological characters between two specimens were shown in Table 2.

Molecular analyses. The phylogenetic trees (ML and BI) show that all the species are recovered monophyletic and the new species from Markazi Province described herein branches as a sister taxon to Eremias persica with high support values $(\mathrm{PP}=1$ and $\mathrm{BS}=100)($ Fig. 2). Uncorrected genetic distances show high divergences among the Eremias species were examined in the study, and the minimum genetic distances were 10.1% (Cyt b) and 5% (12S) between the new species from Markazi Province described herein and E. persica (Table 3).

FIGURE 2. The phylogenetic tree of ten species of Eremias with the combined genes (Cyt b and 12S). The topology of BI and ML trees is the same, therefore only ML tree is shown and values above and below branches indicate bootstrap supports for ML and posterior probabilities for the Bayesian analyses, respectively.

TABLE 2. Variation among the type series.

Characteristic	ZFMK102757	ZFMK102758
Snout to vent length (SVL) (mm)	54.5	56.0
Total length (TL) (mm)	147.0	149.7
Scales across middle of dorsum	60	63
Longitudinal rows of ventral plates	15	15
Transverse rows of ventral plates	32	32
Submaxillary shields	5	5
In contact submaxillary shields	3	3
Supralabials	$10 / 9$	$9 / 9$
Supralabials anterior to subocular	$7 / 6$	$6 / 6$
Supraocular	3	3
Supraciliaris	$5 / 6$	$5 / 5$
Gulars	30	31
Collar	12	12
Scales in 10 th caudal annulus	31	31
Femoral pores	$19 / 20$	$20 / 21$
Scales between femoral pores	1	1

Systematics

Family Lacertidae Oppel, 1811

Genus Eremias Fitzinger, 1834

Eremias persica and similar species

Blanford described Eremias persica in 1875 but the type locality is not exact and limited to just "near Esfahan". In 1974 Szczerbak designated the lectotype, but did not give a register number. Therefore there isn't any certain specimen from the type series. Since there are many specimens identified as Eremias persica (Anderson, 1999; Leviton et al., 1992; Mozaffari et al., 2006) from all over Iran's central and eastern plateau and the new population of Eremias from Markazi Province of Iran shows some morphological similarities to the E. persica, two groups of datasets where added to the phylogenetic analyses; one group from around the type locality and the other from north easternmost known population of this species due to this possibility that the recent new population of Eremias could be the north westernmost population of E. persica. According to combined morphological and genetic evidence, the new population of Eremias from Markazi Province of Iran is considered as undescribed species.

Eremias fahimii sp. nov.

(Figs. 3 and 4)
Eremias persica Anderson, 1999: 221 (part.); Leviton, Anderson, Adler and Minton, 1992: 57 (part.); Mozaffari, Kamali and Fahimi, 2006: 176 (part.).

Diagnosis. An Eremias species with three nasals; lower nasal resting on two supralabials; subocular bordering mouth; lateral scales of forth toe not forming distinct fringes; forth toe with single complete row of subdigital scales; the two series of femoral pores separated by a single scale; collar scales distinctly larger than adjacent gulars; 30-31 gulars in straight median series; 60-63 dorsals; 31 scales in the tenth caudal annulus; upper caudal scales smooth and without distinct keels.

Comparisons. Whether the subgenera represent monophyletic groups or not, as morphologically-defined taxa they are useful bins for comparing and diagnosing our new species. Eremias fahimii sp. nov. can be excluded from the subgenus Scapteira by lacking the lateral fringes on the fourth toe (Fig. 3D) and by a subocular scale that is in contact with the edge of mouth (Fig. 3C). The latter character also excludes it from the subgenus Ommateremias. It can be excluded from the subgenus Rhabderemias by its large size and by having longitudinal dorsal stripes that are broken into a spotted pattern (Anderson, 1999). Within the Iranian members of the subgenus Eremias, E. fahimii sp. nov. can be differentiated from E. isfahanica by having more supralabial scales (9-10 vs. 6-8) 6-7 of them located anterior to subocular ($v s .5$), smaller gap between femoral pores (1 scale $v s .3$) (Fig. 3E), fewer supraciliary scales (5-6 vs. 7) and fewer subdigital lamella under the $4^{\text {th }}$ toe (20-21 vs. 22-26). It can be distinguished from Eremias kopetdaghica Szczerbak, 1972 by having more mid-dorsum scales ($60-63$ vs. $48-59$), more scales in the $10^{\text {th }}$ caudal annulus (31 vs. 20-26), more gular scales (30-31 vs. 19-28) (Fig. 3A) and the absence distinctly keeled upper caudal scales (Fig. 3F). With the latter character, it can be distinguished from Eremias strauchi Kessler, 1878. It can be distinguished from E. lalezharica by having more mid-dorsum scales ($60-63$ vs. 54-59), more pairs of submaxillary shields (5 vs.4) (Fig. 3A), fewer gular scales (30-31 vs. 33-40), fewer collar scales (12 vs. 13-15), more femoral pores (19-21 vs. 16-18) and a smaller gap between the femoral pores (1 scale $v s .3-5$). It can be distinguished from E. montana by having more transverse rows of ventral plates (31-32 vs. 27-28), more scales in the $10^{\text {th }}$ caudal annulus (31 vs. 27-28), more gular scales (30-31 vs. 23-25), more collar scales (12 vs. 9-11) and more supralabials anterior to subocular (6-7 vs. 4-5) (Fig. 3C). It can be distinguished from E. papenfussi by having more supralabial scales ($9-10$ vs. 8), 6-7 of them located anterior to the subocular (vs. 5), more gular scales (30-31 vs. 24-28) and more scales in the $10^{\text {th }}$ caudal annulus ($31 \mathrm{vs} .23-28$). There are also very obvious differences in the shape and size of the parietals, interparietal and frontoparietals. E. fahimii sp. nov. has a relatively large quadrilateral interparietal ($v s$. small oval in E. papenfussi) and the length of this scale is almost as long as the parietals' junction and a little bit shorter than the frontoparietals' junction; While this length is about half of the parietals' junction and a third
of the frontoparietals' junction in E. papenfussi. Quadrilateral shape of interparietal in E. fahimii sp. nov. has led frontoparietals to grow trapezoidal and parietals to grow almost rectangular. But in E. papenfussi that is opposite. Frontoparietals are rectangular and parietals are trapezoidal (Figs. 3B and 6). Eremias fahimii sp. nov. can be distinguished from Eremias suphani Basoglu and Hellmich, 1968 by lacking the extension of gular scales to the second inframaxiallary scales (Franzen \& Heckes, 1999) (the second and third pair of submaxillary shields are in contact) (Fig. 3A). It can be distinguished from Eremias velox Pallas, 1771 by having more mid-dorsum scales (60-63 vs. 46-56) and more gular scales (30-31 vs. 23-25). Regarding to its color pattern in adult form, it can also distinguish from E. kopetdaghica, E. strauchi, E. lalezharica and E. velox by absence of lateral color ocellus (Fig. 4) (Mozaffari et al., 2016).

Description of Holotype (ZFMK102757). Size: A medium-sized Eremias with a SVL of 54.5 mm and TL of 147 mm .

Scalation (Fig. 3): Subocular bordering mouth; 9/10 supralabials, six/seven anterior to subocular; lower nasal rests on first and second supralabials as well as the frontonasal; three (two large and one small) supraocular scales; lateral scales of the fourth toe do not form distinct fringes and 20/21 subdigital lamella under the toe; two rows of 19/20 femoral pores separated by a single scale that reach the knee; five submaxillary shields, first three pairs in contact; 30 gular scales between submaxillary shields and collar; collar made up of 12 scales; 60 scales across middorsum; 15 longitudinal and 32 transverse rows of ventral plates; 31 scales in the $10^{\text {th }}$ caudal annulus; upper caudal scales smooth and without distinct keels.

FIGURE 3. Morphology of Eremias fahimii sp. nov. (ZFMK102757). A: Ventral view of head; B: Dorsal view of head; C: Lateral view of head; D: Ventral view of hind foot; E: Ventral view of hind limb and femoral pores; F: Caudal scales in the $10^{\text {th }}$ annulus.

Description of Paratype (ZFMK102758). Size: SVL of 56 mm and TL of 149.7 mm .
Scalation: Subocular bordering mouth; 9 supralabials, six anterior to subocular; lower nasal rests on first and second supralabials as well as the frontonasal; three (two large and one small) supraocular scales; lateral scales of the fourth toe do not form distinct fringes and 20 subdigital lamella under the toe; two rows of 20/21 femoral pores separated by a single scale that reach the knees; five submaxillary shields, first three pairs in contact; 31 gular scales between submaxillary shields and collar; collar made up of 12 scales; 63 scales across mid-dorsum; 15 longitudinal and 32 transverse rows of ventral plates; 31 scales in the $10^{\text {th }}$ caudal annulus; upper caudal scales smooth and without distinct keels. Table 1 shows the variation between the holotype and the paratype.

Coloration. In life, the dorsum is dark brown to black with a series of five longitudinal light cream or milky white stripes. The medial stripe starts anteriorly at the posterior margin of the parietals. But four other stripes start
from the anterior margin of parietals, passing through them. The inner stripe pair connect with each other in the pelvic region; but the outer pair extends to at least the anterior third of the tail. Sometimes the black or dark brown space between light stripes breaks up and makes dark irregular spots in a light brown or sandy background. Another two pairs of light lateral stripes on each side of body, one starts at the upper and the other starts about the lower edge of the ear opening. Both stripes may break up into small light spots on flanks. Head is sandy to light brown with irregular black spots. Dorsal side of the limbs is light brown with black irregular cloudy patterns and light spots. Dorsal side of the tail light brown, dark brown or black with previous mentioned light stripes (Fig. 4). The venter and ventral side of tail milky white.

FIGURE 4. Eremias fahimii sp. nov. in its natural habitat (Photo by Omid Mozaffari).

Etymology. According to Arnold et al. (2007), "Eremias is a Greek noun meaning solitary devotee, and is related to Eremia, signifying an isolated place or desert." (Arnold et al., 2007; Mozaffari \& Parham, 2007) The epithet fahimii is for Hadi Fahimi (1980-2018), a great young ecologist, environmentalist, herpetologist, mammalogist, co-author of the Atlas of Reptiles of Iran (Mozaffari et al., 2016) and friend of the authors, who passed away too soon in a plane crash.

Remarks. Habitat in type locality consists of mild slopes and covered with highly weathered rocky materials. The dominant vegetation is Atriphaxis, Artemisia, Peganum and annual grass (Fig. 5).

Examining fecal materials shows that like almost all Eremias species, they feed on small arthropods. The main ingested food of the two specimens were coleopterans, because of their availability due to the beginning of the dispersal season of these insects.

The other reptile species syntopic with Eremias fahimii sp. nov. are Eumeces schneiderii Daudin, 1802, Malpolon insignitus Geoffroy St. Hilaire, 1809, Mesalina watsonana Stoliczka, 1872, Ophisops elegans Menetries, 1832, Psammophis schokari Forskal, 1775 and Trapelus agilis Olivier, 1807.

FIGURE 5. Habitat at the type locality of Eremias fahimii sp. nov.

FIGURE 6. Differences in shape and size of parietals, interparietal and frontoparietals between E. fahimii sp. nov. (A) and E. papenfussi (B).
TABLE 3. Uncorrected genetic distances (p-distances) between ten species of Eremias based on Cyt b (below matrix) and 12S (above matrix).

	E. fahimii sp. nov.	E. persica	E. montana	E. strauchi	E. velox	E. kopetdaghica	E. lalezharica	E. isfahanica	E. papenfussi	E. suphani
E. fahimii sp. nov.		0.050	0.094	0.065	0.070	0.063	0.080	0.087	0.061	0.063
E. persica	0.101		0.098	0.079	0.088	0.083	0.105	0.090	0.079	0.079
E. montana	0.163	0.160		0.070	0.098	0.071	0.086	0.040	0.067	0.074
E. strauchi	0.158	0.150	0.138		0.079	0.060	0.085	0.072	0.068	0.069
E. velox	0.181	0.180	0.174	0.169		0.072	0.090	0.090	0.078	0.079
E. kopetdaghica	0.173	0.163	0.168	0.160	0.187		0.083	0.073	0.070	0.063
E. lalezharica	0.183	0.164	0.157	0.153	0.188	0.164		0.084	0.070	0.083
E. isfahanica	0.268	0.245	0.252	0.238	0.267	0.232	0.236		0.049	0.067
E. papenfussi	0.232	0.234	0.246	0.231	0.242	0.242	0.229	0.248		0.050
E. suphani	0.159	0.140	0.147	0.147	0.179	0.139	0.141	0.235	0.234	

Discussion

The results of the integrative study revealed that there are apparent morphological and molecular differences between E. fahimii sp. nov. and other Eremias species examined in this study. The results clarified the validation of the new species (E. fahimii sp. nov.) based on both molecular and morphological data. Although there are only two females available for morphological examination, E. fahimii sp. nov. is separated from the other Iranian members of the subgenus Eremias species with different diagnostic characters as represented in the taxonomy section (also see Table 2). The key characters to identify E. fahimii are lacking lateral fringes on the fourth toe and 20-21 subdigital lamella under that, a lower nasal shield that rests on two of its $9-10$ supralabials, ventral plates arranged in 15 oblique longitudinal and 32 transverse rows, 19-21 femoral pores that separates by only one scale, 30-31 gular and 12 collar scales, 31 smooth scales in the $10^{\text {th }}$ caudal annulus, five to six supraciliary scales and $60-63$ scales around the mid-body.

According to the phylogenetic analyses, E. fahimii sp. nov. represents a distinct lineage with high support value (Fig. 2), which is a sister taxon to E. persica. The genetic distances based on Cyt b indicated that Iranian Eremias are highly divergent from each other (Table 3), but the new species had lower genetic divergence ($\sim 10 \%$) with the Persian racerunner, E. persica Blanford 1875, a species complex which is distributed in the whole central plateau, south of the Alborz and the foothills of Zagros Mountain range (Anderson, 1999; Rastegar-Pouyani et al., 2010; Ahmadzadeh et al., 2017). Morphological examination of more specimens and using suitable nuclear markers is necessary in order to obtain more robust evidence to assess the taxonomy and phylogeny of the species.

Along with Eremias andersoni Darevsky \& Szczerbak, 1978, Eremias isfahanica Rastegar-Pouyani et al., 2016, Eremias kavirensis Mozaffari \& Parham, 2007, Eremias lalezharica Moravec, 1994, Eremias montana RastegarPouyani \& Rastegar-Pouyani, 2001 and Eremias papenfussi Mozaffari et al., 2011, the description of this new species represents the seventh species of Eremias endemic to Iran. Although E. fahimii sp. nov. is only known from its type locality, it is highly probable that it is distributed in Tehran, Alborz, Qom, Qazvin and Zanjan Provinces due to topological characteristics and habitat similarities of these areas to the type locality.

Overall, in spite of the extensive studies, the Iranian lizard fauna is poorly known. The country comprises over 150 lizard species, which inhabit a variety of habitats (Mozaffari et al., 2016; Uetz \& Hallermann, 2020). Recently, many cryptic species of lizards were described and reported from Iran, for instance, some species of Asaccus and Dareveskia (Torki et al., 2011; Ahmadzadeh et al., 2013). A similar pattern was also suggested for Eremias. It is assumed that Eremias is a highly diverse genus with many species still pending to be discovered and described (Mozaffari \& Parham, 2007; Mozaffari et al., 2011; Rastegar-Pouyani et al., 2016). Applying integrated approaches in such cases is useful as it allows the identification and description of new species, which also have important implications for conservation and natural resource management.

Acknowledgments

We thank Reza Zanbagh and Forooz Jezghani for help with the fieldwork and collecting of samples. Aria Herpetological Institute is also thanked for facilitating this study.

Literature cited

Ahmadzadeh, F., Flecks, M., Carretero, M.A., Mozaffari, O., Böhme, W., Harris, D.J., Freitas, S. \& Rödder, D. (2013) Cryptic speciation patterns in Iranian rock lizards uncovered by integrative taxonomy. PLoS One, 8 (12), e80563. https://doi.org/10.1371/journal.pone. 0080563
Ahmadzadeh, F., Lymberakis, P., Saberi-Pirooz, R. \& Kapli, P. (2017) The evolutionary history of two lizards (Squamata: Lacertidae) is linked to the geological development of Iran. Zoologischer Anzeiger, 270, 49-56. https://doi.org/10.1016/j.jcz.2017.09.003
Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 (6), 716723. https://doi.org/10.1109/TAC.1974.1100705
Anderson, S.C. (1999) The Lizards of Iran. Society for the Study of Amphibians and Reptiles, Ithaca, New York, 442 pp. Arnold, E.N. (1989) Towards the phylogeny and biogeography of the Lacertidae: relationships within an Old-World family of
lizards derived from morphology. Bulletin of the British Museum (Natural History) Zoology, 55, 209-257.
Arnold, E.N., Arribas, O. \& Carranza, S. (2007) Systematics of the Palearctic and Oriental lizard Tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa, 1430 (1), 1-86. https://doi.org/10.11646/zootaxa.1430.1.1
Franzen, M. \& Heckes, U. (1999) Eremia susphani Basoglu \& Hellmich, 1968 und Eremias strauchi Kessler, 1878 in der östlichen Türkei: Diagnostische Merkmale, Verbreitung und Lebensräume (Sauria: Lacertidae). Salamandra, 35 (4), 255-266.
Guo, X., Dai, X., Chen, D., Papenfuss, T.J., Ananjeva, N., Melnikov, D. \& Wang, Y. (2011) Phylogeny and divergence times of some racerunner lizards (Lacertidae: Eremias) inferred from mitochondrial 16S rRNA gene segments. Molecular Phylogenetics and Evolution, 61, 400-412.
https://doi.org/10.1016/j.ympev.2011.06.022
Huelsenbeck, J.P. \& Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17 (8), 754 755. https://doi.org/10.1093/bioinformatics/17.8.754
Katoh, K., Misawa, K., Kuma, K. \& Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30 (14), 3059-3066. https://doi.org/10.1093/nar/gkf436
Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Villablanca, F.X. \& Wilson, A.C. (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences, 86 (16), 6196-6200. https://doi.org/10.1073/pnas.86.16.6196
Kumar, S., Stecher, G., Li, M., Knyaz, C. \& Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35 (6), 1547-1549. https://doi.org/10.1093/molbev/msy096
Leviton, A.E., Anderson, S.C., Adler, K. \& Minton, S.A. (1992) Handbook to Middle East Amphibians and Reptiles. Society for the Study of Amphibians and Reptiles, Ithaca, New York, 252 pp.
Moravec, J. (1994) A new lizard from Iran, Eremias (Eremias) lalezharica sp. n. (Reptilia: Lacertilia: Lacertidae). Bonner Zoologische Beiträge, 45, 61-66.
Mozaffari, O., Ahmadzadeh, F. \& Parham, J. (2011) Eremias papenfussi sp. nov., a new lacertid lizard (Sauria: Lacertidae) from Tehran Province, Iran. Zootaxa, 3114 (1), 57-62. https://doi.org/10.11646/zootaxa.3114.1.6
Mozaffari, O., Kamali, K. \& Fahimi, H. (2016) Atlas of Reptiles of Iran. Iran department of the environment, Tehran, 361 pp.
Mozaffari, O. \& Parham, J.F. (2007) A new species of racerunner lizard (Lacertidae: Eremias) from Iran. Proceedings of the California Academy of Sciences, 58, 569-574.
Nylander, J. (2004) MrModeltest 2.2. Distributed by the Author. [program]
Rambaut, A., Drummond, A.J., Xie, D., Baele, G. \& Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7.1. Systematic Biology, 67, 901-904. https://doi.org/10.1093/sysbio/syy032
Rastegar-Pouyani, E., Avci, A., Kumlutaş, Y., Ilgaz, Ç. \& Hosseinian-Yousefkhani, S.S. (2013) New country record and range extension of Eremias suphani Bapoðlu \& Hellmich, 1968 from Iran. Amphibian \& Reptile Conservation, 6 (2), 35-39.
Rastegar-Pouyani, E., Hosseinian-Yousefkhani, S.S., Rafiee, S., Kami, H.G., Rajabizadeh, M. \& Wink, M. (2016) A new species of the genus Eremias Fitzinger, 1834 (Squamata: Lacertidae) from Central Iran, supported by mtDNA sequences and morphology. Zootaxa, 4132 (2), 207-220. https://doi.org/10.11646/zootaxa.4132.2.2
Rastegar-Pouyani, E., Hosseinian-Yousefkhani, S.S. \& Wink, M. (2015) Taxonomic reevaluation of Eremias strauchi strauchi Kessler, 1878 and Eremias strauchi kopetdaghica Szczerbak, 1972, based on nuclear and mitochondrial DNA sequences (Reptilia: Lacertidae). Zoology in the Middle East, 61 (2), 118-124. https://doi.org/10.1080/09397140.2015.1020615
Rastegar-Pouyani, E., Noureini, S.K., Rastegar-Pouyani, N., Joger, U. \& Wink, M. (2012) Molecular phylogeny and intraspecific differentiation of the Eremias velox complex of the Iranian Plateau and Central Asia (Sauria, Lacertidae). Journal of Zoological Systematics and Evolutionary Research, 50 (3), 220-229. https://doi.org/10.1111/j.1439-0469.2012.00662.x
Rastegar-Pouyani, E., Rastegar-Pouyani, N., Noureini, S.K., Joger, U. \& Wink, M. (2010) Molecular phylogeny of the Eremias persica complex of the Iranian plateau (Reptilia: Lacertidae), based on mtDNA sequences. Zoological Journal of the Linnean Society, 158 (3), 641-660. https://doi.org/10.1111/j.1096-3642.2009.00553.x
Rastegar-Pouyani, N. \& Rastegar-Pouyani, E. (2001) A new species of Eremias (Sauria: Lacertidae) from highlands of Kermanshah Province, Western Iran. Asiatic Herpetological Research, 9, 107-112. https://doi.org/10.5962/bhl.part. 15563
Sambrook, J. \& Russell, D.W. (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2100 pp.
Sindaco, R., Simo-Riudalbas, M., Sacchi, R. \& Carranza, S. (2018). Systematics of the Mesalina guttulata species complex
(Squamata: Lacertidae) from Arabia with the description of two new species. Zootaxa, 4429 (3), 513-547. https://doi.org/10.11646/zootaxa.4429.3.4
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22 (21), 2688-2690. https://doi.org/10.1093/bioinformatics/btl446
Szczerbak, N.N. (1972) New subspecies of Eremias strauchi-Eremias strauchi kopetdaghica ssp. nova (Sauria, Reptilia) from Turkmenia. Vestnik Zoologii, 6, 83-86.
Szczerbak, N.N. (1974) Yashchurki Palearktiki (Eremias lizards of the Palearctic). Axadeimiya Nauk Ukrainskoi USSR Institut Zoologii, Naukova Dumka, Kiev, 296 pp.
Torki, F., Ahmadzadeh, F., Ilgaz, Ç., Avci, A. \& Kumlutacs, Y. (2011) Description of four new Asaccus Dixon and Anderson, 1973 (Reptilia: Phyllodactylidae) from Iran and Turkey. Amphibia-Reptilia, 32, 185-202. https://doi.org/10.1163/017353711X556998
Uetz, P. \& Hallermann, J. (2020) The Reptile Database. Zoological Museum, Hamburg. Available from: http://reptile-database. reptarium.cz/ (accessed 27 Mar 2020)

