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3UCM

June 17, 2020

Abstract

During geographical expansion of a species individual colonizers have to confront different ecological challenges, and the capacity

of the species to broaden its range may depend on the total amount of adaptive genetic variation supplied by evolution. We

set out to test whether the distribution of loci under selection along a contrasting environmental gradient can be turned into

a model that accurately predicts a species’ range. If positive, this may shed light on the genetic source of adaptive limits

that shape range boundaries. We sampled five populations of the western Mediterranean lizard Psammodromus algirus that

inhabit a noticeable environmental gradient of temperature and precipitation. We used 21 SNPs putatively under selection to

correlate the genotypes of 95 individuals with environmental variation among their populations, using 1x1 km2 grid cells as

sampling units. By extrapolating the resulting model to all possible combinations of alleles, we inferred the locations that were

theoretically suitable for the species. The inferred distribution range overlapped to a large extent with the realized range of

the species, including an accurate prediction of internal gaps and range borders. Our results suggest an adaptability threshold

determined by the amount of genetic variation available that would be required to warrant adaptation beyond a certain limit

of environmental variation. These results support the idea that the expansion of a species’ range may be ultimately linked to

the arising of new variants under selection.

Introduction

Aside from limits set by dispersal barriers, distribution range borders are commonly assumed to be the result
of the constraints imposed by the ecological requirements of species, as environmental gradients change
towards suboptimal conditions near range edges (Hutchinson 1957; Brown 2002). All in all, the factors
that shape these distribution borders not due to dispersal barriers are ultimately linked to local adaptation
dynamics; simply put, a species does not occur outside its distribution border because it is not adapted to
the environmental conditions beyond it (Kirkpatrick and Barton 1997; Bridle and Vines 2007). However, the
edge of a species’ range is typically more abrupt than expected, given that environmental change towards
suboptimal conditions or niche boundaries is usually gradual (Sexton et al. 2009). Moreover, all across their
ranges species meet a range of conditions that is much greater than the gradient that takes place at the
edge of the range (Kirkpatrick and Barton 1997). To understand these seemingly arbitrary boundaries to
range expansion, Haldane (1956) proposed gene ‘swamping’ as a center-border effect by which gene flow from
central to marginal habitats causes maladaptation at the edges of the range, reducing population density
and constraining range expansion. This dynamic pattern would jeopardize adaptation at the edge of the
range even if the genetic variants that could promote range expansion are present in the genetic pool of a
species, because gene swamping would hamper a rise in the frequencies of adaptive alleles at range limits
(Haldane 1956). However, this hypothesis has been subjected to continuous debate (Nosil and Crespi 2004;
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Sexton et al. 2011; Polechová 2018).

Another possibility is that range limits arise because a species has fully colonized the spatial projection of
its ecological niche, in such way that niche expansion must precede range enlargement (Hutchinson 1957).
In such cases, since niche expansion implies adaptation to more extreme conditions along one or more
environmental gradients, this process is limited by the magnitude of the additive genetic variance associated
with adaptation to these gradients (Lande and Shannon 2006). Conversely, if habitat suitability remains high
at and beyond range boundaries, then dispersal constraints, gene swamping and/or marginal demographic
effects could be defining the location and shape of distribution limits (Kirkpatrick and Barton 1997; Bridle
and Vines 2007; Charlesworth 2009; Peterson 2011). But if the edges of the range are tightly linked to the
exhaustion of relevant genetic variance, then gene swamping cannot properly explain those limits, because
it cannot operate beyond the limits imposed by additive genetic variance at relevant adaptive loci. In other
words, if the genetic variability required for range expasion is not available in the genetic pool of a species,
gene swamping cannot be invoked to explain range limits (Polechova and Barton 2015, Polechova 2018).
Evaluating these different hypotheses is thus crucial to understanding the adaptive causes underlying the
formation and shaping of range edges (Sexton et al. 2009; Lee-Yaw et al. 2018).

Landscape genomics approaches have boosted our understanding of how environmental variables drive the
genetic dynamics of local adaptation (Hoban et al. 2016; Ahrens et al. 2018). These methods can be applied
to model (and predict) potential range boundaries by looking at the shifts in allelic frequencies along envi-
ronmental gradients (Eckert et al. 2008; Herrera and Bazaga 2008). Thus, it is possible to explore what loci
govern the adaptability of a species, and to model the suitability of certain genotypes to different habitats all
over a species’ range (i. e, environmental association analyses; Rellstab et al. 2015; Whitlock and Lotterhos
2015). However, describing correlations between genotypes and environmental gradients is only one part of
the challenge, because some loci could show strong but spurious associations with environmental gradients
due to population history rather than natural selection. Thus, it is also paramount to identify the loci un-
derpinning local adaptation, since they make the fraction of genetic variation that is relevant to explain
an individual’s ability to disperse to, and thrive in, new habitats (Dudaniec et al. 2018). Identifying these
combinations of loci under selection is a prerequisite to understanding the adaptive basis of the origin and
maintenance of new populations and, therefore, the genetic dynamics that shape range boundaries (Hargrea-
ves et al. 2014). Yet, new populations of a species can be established either by 1) the arrival of individuals
carrying genetic adaptations to that new site, or 2) the arrival of genetic variants that can recombine in
situ to generate new locally adapted genotypes (Barton and Etheridge 2018). Discerning between these two
possibilities is a hard challenge. In particular, the last scenario is controversial because it assumes that an
individual is able to reproduce in a location to which it is not adapted. However, the potential to produce
new genetic combinations increases with dispersal rate, by rising the probability that different (suboptimal)
genotypes eventually co-occur at the same new habitats (Barton and Etheridge 2018; LaRue et al. 2018).
Thus, it is important to consider dispersal ability in landscape genomic studies, and to compare systems
with different dispersal rates. In particular, study organisms with low dispersal rates should reduce the con-
founding effects of dispersion, allowing us to focus on local adaptation dynamics as responsible of expansion
constraints (Lee-Yaw et al. 2018).

In this study, we integrate genomic data into the distribution modelling of a lacertid lizard species, the
Large Psammodromus Psammodromus algirus , whose phylogeographical and ecological differentiation is
well characterized (Dı́az et al. 2017, Llanos-Garrido et al. 2019). This lizard is widespread across the Wes-
tern Mediterranean region, and its range encompasses contrasting environmental conditions, extending from
northern Africa in the south to southwest France in the north, and from Portugal in the west to Tunisia
in the east (Fig. 1). We used 21 loci putatively under selection (hereafter outliers; Llanos-Garrido et al.
2019) to model distribution boundaries on the basis of five closely located central populations that cover
a representative fraction of the environmental variation faced by P. algirus across its entire distribution
range. To this end, we run an environmental association analysis (Rellstab et al. 2015) with allelic variants
at loci under selection as predictors, and we extrapolated, for all possible allelic combinations at those loci,
the geographical locations with suitable environmental conditions. By doing so, we were able to infer not
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only an ecological niche model of the whole distribution range of the species, but also the genotypes that
would potentially be adapted to each geographical grid cell within it. We assumed a simple model without
center-border biases, and in which every genotype is able to reach every geographic cell. Also, we only used
the (adaptive) genetic variation likely to be associated with environmental conditions, in such way that we
could know whether actual range limits are linked to adaptability thresholds determined by the amount of
additive genetic variance available for selection. This approach allowed us to test whether a species’ dis-
tribution range can be explained by the genetic dynamics that shape local adaptation, without invoking
demographic processes such as gene swamping or increased homozigosity near the edge of the range (Herrera
and Bazaga 2008; Polechová et al. 2009).

Specifically, we aimed to answer the following questions: 1) Is it possible to infer an entire distribution range
on the basis of a limited number of outlier loci? 2) How important are limitations to dispersal in defining a
species’ range limits? 3) Are there fewer genotypes adapted to marginal conditions than to core conditions?
And 4) is there an adaptability threshold, determined by the availability of genetic variance under selection,
that constrains the expansion of the range beyond its actual boundaries?

Materials and Methods

Study system

Psammodromus algirus is a ground-dwelling, heliothermic lizard from the Western Mediterranean region
whose distribution range encompasses a wide variety of habitats, from arid shrublands to temperate forests
(Diaz and Carrascal 1991). In the Iberian Peninsula, where P. algirus is the most abundant and widespread
lizard species, climatic heterogeneity is mirrored by broad changes in vegetation patterns: forests dominate
in the west of its range, whereas shrublands prevail in the east. The genetic diversity of the species is broadly
structured in two mtDNA lineages, eastern and western, which diverged ca. 3-3.5 mya (Carranza et al. 2006;
Verdú-Ricoy et al. 2010). These lineages show some degree of ecologically-driven divergence, because eastern
lizards typically display a striped dorsal pattern absent among western ones, and striped and unstriped
phenotypes seem to be adaptively linked to crypsis in the predominant habitat where lizards live (Dı́az et
al. 2017).

We sampled 95 lizards in five populations along a broad environmental gradient in the center of the Iberian
Peninsula, covering both mtDNA lineages (Fig. 2). Three sampling sites housed populations of eastern
mtDNA adscription: 1) Lerma (42.058 ºN, -3.611 ºE; 900 m asl), a fragmented mixed forest interspersed
with grassland patches, 2) Aranjuez (40.016 ºN, -3.586 ºE; 594 m asl), a hot, dry site with a high cover
of herbs and shrubs and no trees, and 3) Brihuega (40.778 ºN, -2.911 ºE; 1,009 m asl), a deciduous open
forest with a mosaic of grassland and woodland patches. The two other sampling sites had populations of
the western lineage: 4) El Pardo (40.511 ºN, -3.755 ºE; 658 m asl), a xeric, lowland evergreen forest, and 5)
Navacerrada (40.726 ºN, -4.023 ºE; 1,230 m asl), a montane location covered by deciduous forest. Several
particularities of these populations make them representative of a wide range of selective pressures gathered
around the core of this species’ range: 1) lizards from Lerma inhabit a very fragmented forest archipelago
that resembles the typical habitat of western lizards (although they belong to the eastern lineage; see Dı́az et
al. 2005; Santos et al. 2008; Telleria et al. 2011; Pérez-Tris et al. 2019; for further information about habitat
fragmentation effects in this system); 2) Aranjuez lizards inhabit the typical hot and dry habitat of eastern
lizards, and although this locality is very close to the western populations included in this study (El Pardo
and Navacerrada), it receives very little gene flow from them (Dı́az et al. 2017), so that its isolated condition
promotes the accumulation of genetic divergence subject to selection (Llanos-Garrido et al. 2019); and 3)
the two western populations are separated by a significant altitudinal gradient, and although lizards from
both populations show little genetic differentiation (Dı́az et al. 2017), they differ in important phenotypic
traits such as escape tactics, sexual dimorphism, sexual ornaments, ectoparasite loads and other life history
traits (Iraeta et al. 2006, 2010, 2011; Llanos-Garrido et al. 2017).

DNA extraction, sequencing and variant calling, and outlier analyses

The 21 loci under selection used in this study were detected by outlier search analyses conducted in a previous
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study (Llanos-Garrido et al. 2019). Shortly, we obtained tissue samples by clipping 2 cm of the tail tip of
lizards, which were afterwards released at their site of capture. We purified DNA for library preparation
using the Speedtools Tissue DNA Extraction kit (Biotools).

We used the restriction enzyme Pst1 for GBS library preparation. Sequencing was done in an Illumina Hi-
Seq2500 sequencer. To recover SNPs we used the pipeline UNEAK, implemented in TASSEL v.3.0 (Bradbury
et al. 2007), which is specifically designed for samples with no reference genome. We aligned sequence tags
to each other to form ‘networks’ of tags, where each node is a single tag sequence, and each edge represents
a single base pair difference between two tags. We pruned the networks to remove putative sequencing errors
(low frequency alleles) using the error rate threshold parameter. We also discarded loci with minor allele
frequencies < 0.01 or that could be successfully sequenced in less than 10% of individuals. The resulting
dataset had 73,291 biallelic SNPs (Single Nucleotide Polymorphism), a site depth of 6.60 ± 6.75 and a site
missingness of 0.42 ± 0.31.

To minimize false positives in outlier analyses, we discarded loci that could not be successfully sequenced from
at least 75% of individuals in each population, and loci with minor allele frequencies < 0.05 in each population,
thus excluding all private alleles from the dataset. Also, prior to performing outlier analyses, we used PLINK
v1.9. (Purcell et al. 2007) to prune the SNP database for linkage disequilibrium (LD), according to observed
sample correlation coefficients. This was necessary because if the outliers were found on highly correlated
contigs, their non-independence could bias subsequent environmental association analysis (explained below).
The resulting SNP dataset included 6,421 loci. We used a Bayesian approach to perform an outlier analysis
as implemented in Bayescan v.2.1 (Foll and Gaggiotti 2008). Bayescan uses a logistic regression model to
partition FST coefficients into a population-specific term (β) and a locus-specific term (α). We selected loci
with α > 0 as suggesting positive selection, and a false discovery rate (corrected for multiple testing) q <
0.05. To obtain these parameters, we ran the MCMC algorithm implemented in the program with a prior
odd value of 10, and using 20 pilot runs of 5,000 iterations each, followed by 100,000 iterations with a burn-in
of 50,000 interactions. In order to search for outliers while accounting for coancestry effects, we performed a
second outlier analysis using the Bonhomme et al. (2010) extension of the Lewontin-Krakauer test. We also
selected loci based on the statistical significance of the FLK statistic, with a restrictive significance threshold
of p < 0.001 to account for multiple testing.

The outlier analysis performed with Bayescan detected 12 outlier loci with α > 0 (0.97 < α < 1.35) and q
< 0.05, while the FLK analysis identified nine additional loci with p < 0.001, none of which was previously
detected by Bayescan. An MDS analysis performed elsewhere with these 21 SNPs putatively under selec-
tion, placed sampled populations along a first major axis that recovered the same pattern of differentiation
observed for mtDNA and for some relevant phenotypic traits (Llanos-Garrido et al., 2019). Moreover, these
phenotypes were interpreted as adaptive after a process of ecologically-driven divergence in a much wider
sample (Dı́az et al., 2017).

Quantification of environmental variation

To quantify environmental variation all over the potential range of the species, we selected an area that
included its actual distribution range plus a 450-850 km wide perimeter belt around it (width variation
depended on the geographical features of range edges). Within this area, we used data from the Bioclim
2.0 dataset (cell resolution = 1x1 km; Booth et al. 2014) to compute the score of each cell on a principal
component analysis that combined all Bioclim environmental variables using R core. This PCA yielded a
principal axis that opposed hot areas with low precipitation to temperate ones with high precipitation (Fig.
2).

Environmental Association Analysis (EAA)

Environmental values (dependent variable for EAA models) were assigned to the 1x1 km grid cells where
individuals had been sampled, using QGIS v2.18.16 (QGIS Delopment Team 2015) and a layer of PCA-
scores within polygons defined by sampling locations. The genotypes for each loci (independent variables
for EAA models) were recoded as 0, 1 or 2 depending on whether they were homozygous for the reference
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allele, heterozygous or homozygous for the alternative allele, respectively. As we pruned the SNP dataset by
linkage disequilibrium, we avoided including any collinear predictors in the models.

Our EAA was constrained by the fact that the 95 individuals genotyped belonged to only five different
populations. While this ensures a sufficient characterization of genetic variation within populations, it leads to
unavoidable pseudoreplication of environmental data (and, depending on the extent of genetic differentiation
and aggregation, also of genetic data). To make sure that this problem did not affect our conclusions, we
used four randomization approaches, with the same model selection steps applied to each of them, so that
they could be compared.

Firstly, we based our EAA on 1,000 random assignments of genotypes within populations to 1x1 km sampled
grid cells (hereafter intra-population randomization). Given that environmental variation is several orders of
magnitude larger among than within populations (97.6 % of the variance in PCA scores explained by popu-
lation adscription), we chose to highlight the among-populations component of the models by assuming that
all genotypes could occupy every grid cell within the geographical boundaries of their own population (which
were determined by the discontinuous distribution of suitable habitat). This is more realistic than assuming
a large component of genotype-environment covariation at a local, within-population scale. Moreover, the
genetic component of such covariation could not be detected by our methods of outlier detection, which were
specifically designed to search for genetic divergence among populations. Our set of 1,000 intra-population
randomizations should therefore capture the actual pattern of genotypic and environmental covariation at
the scale of the sampled gradient.

Secondly, we randomized 1,000 times the geographical grid cell assigned to each genotype without taking into
account its population (hereafter inter-population randomization). This allowed us to produce a null hypo-
thesis of no association between genotypic and environmental variation, but which takes into account the fact
that environmental values are geographically structured by population of origin (and thus pseudoreplicated).

Thirdly, we used a randomized set of genetic data to control for the potential effects of genetic structure
among populations and genetic aggregation within them (hereafter randomization by neutral loci ). For that
purpose, we constructed 1,000 new sets by randomly selecting 21 loci from each genotype (i.e. the number of
detected outliers) but without taking into account whether they were characterized as outliers or not. This
was done to account for the fact that neutral genetic variation (randomly selected SNPs) is expected to have
the same degree of aggregation than variation under selection (outliers). However, while we should expect
that at least a fraction of the genetic variation subject to selection should be correlated with environmental
variation, the opposite is true for the neutral differentiation of populations.

Finally, we were aware that outlier analyses should effectively sort through the randomized SNP databases
to identify those that explain the greatest variance among ‘populations’ (or subgroups). The projection of
that variance into environmental PC-space could in turn draw some shape around the five sampled popula-
tions’ environments that would be considered as suitable habitat, perhaps leading to significant genotype-
environment associations. Because of that reason, the outlier selection step needs to be incorporated into
our attempts to identify null expectations. To this end, our fourth randomization approach permuted the
6,421-SNP dataset and reran all the analysis from the outlier detection step onwards (hereafter complete
randomization). We randomly assigned SNP genotypes to individuals and ran Bayescan to detect outliers
putatively under selection with the same methods we used with real data. Then we took the top 21 outlier
SNPs to conduct genotype-environment association models and predict the species’ range. If the environ-
mental signal of the SNPs generated by these simulations (and, as a consequence, expected by pure chance)
is still smaller than that of real data, this must be interpreted as evidence that the SNPs selected by our EAA
are not only correlated with the environmental gradient portrayed by our sampling populations, but also
that they provide good proxies for genetic variants involved in local adaptation. We did not repeat the FLK
extension test with this dataset because no significant phylogenetic (i.e. among-population) patterning is ex-
pected in a genetic dataset where genotypes are randomly assigned to individuals (and hence to populations).
We performed 500 complete randomization tests instead of 1,000 due to computational limitations.
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We performed a backward stepwise multiple regression analysis with each randomized data set (N = 3,500
EAAs in total), with SNPs as predictors and environmental scores as the dependent variable using lmfunction
in R core. By doing this, we obtained a distribution of adjusted R2 estimates and p-values for each set of
randomizations. Final model building was achieved by considering the mean p-values of partial correlations
calculated for all the datasets obtained with the intra-population randomization strategy. In each step, we
removed all SNPs with a mean p-value > 0.5, and we recalculated all partial correlations with the remaining
SNPs. In the last step, when all remaining markers had mean p-values < 0.5, we removed all SNPs with
mean p-values > 0.05. Our final model (genotype-environment association model, or GEAM) was built with
the mean intercept and mean beta values of the remaining SNPs.

Range inference

To infer the distribution range of the species, we followed a two-step procedure. Firstly, we included all
the geographical cells that presented the same environmental scores as the sampled populations (predicted
range #1). This first approach provides a baseline prediction with no genetic information that can be used
to quantify the improvement in predictive ability supplied by GEAM. Secondly, we considered all possible
combinations of alleles for the outlier loci selected by GEAM (i.e., all possible genotypes under selection) to
predict all environmental values suitable for at least one genotype according to GEAM. By fulfilling all grid
cells with those environmental values, we could extrapolate our prediction to the overall distribution range of
the species. Finally, we removed from the inferred range a few disconnected patches (in central France, coastal
Italy, and the Mediterranean islands) that were too far from the main distribution range of P. algirus (>8 km
from the nearest inferred distribution limit, which is the distance to the largest patch disconnected from the
continuous range of the species), whose low dispersal rate (Santos et al. 2009) is supported by the fact that
genetic differentiation can be detected even among forest fragments separated by 350 m of unsuitable arable
land (Pérez-Tris et al. 2019). This produced our second (and final) inferred distribution range (predicted
range #2). The extent of overlap between real and predicted distribution ranges was estimated using QGIS
v2.18.16 (QGIS Development Team 2018).

Results

Environmental Association Analysis

The PCA with all Bioclim environmental variables (N = 19 variables) yielded a single principal component
(eigenvalue = 0.679) that retained four variables using the scree plot criterion: annual mean temperature
(BIO1), max temperature of the warmest month (BIO5), mean temperature of the warmest quarter (BIO10),
and annual precipitation (BIO12). Thereby, this component defined a bioclimatic gradient with a hot and
dry extreme in the area occupied by the Sahara desert (highest values) and a temperate and wet extreme in
northwestern Spain (lowest values; Fig. 2).

A vast majority of inter-population and loci randomizations resulted in non-significant models (Fig. 3). Mean
adjusted R2 for the random assignment of genotypes to populations (inter-population randomization) was
0.002 (SD = 0.038, range = 0 - 0.199), with a mean p-value of 0.487 (SD = 0.292, range = 0.0004 - 1); only
6% of the 1,000 randomized datasets yielded significant results. Mean adjusted R2 for loci randomization
(i.e. random within-population selection of SNPs, either outliers or not) was 0.002 (SD = 0.105, range = 0
- 0.324), with a mean p-value of 0.494; SD = 0.296, range = 0.001- 1); only 5.6 % of the datasets yielded
significant models. In the case of the complete randomizations (i.e. fully permuted SNP datasets prior to
outlier analysis), mean adjusted R2 was 0.047 (SD = 0.092, range = 0 - 0.788), with a mean p-value of 0.616
(SD = 0.451, range = 10-7 - 1).

All the datasets built by intra-population randomization produced highly significant models (mean adjusted
R2 = 0.646 ± 0.007, range = 0.623 - 0.670; mean p-value ± SD =3.5 x 10-17± 2.8 x 10-17, range = 2.02 x
10-18– 2.93 x 10-16; Fig. 3). Only 2 out of the 500 complete randomizations yielded a model that explained
more environmental variability than those built with intra-population randomized datasets. Thus, the en-
vironmental association models including the SNPs under selection (intra-population randomization: mean
R2 = 0.646) had on average between one and three orders of magnitude more predictive power than those
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built with the other three randomization strategies (mean R2 = 0.002, 0.002, and 0.047, for inter-population,
by neutral loci, and complete randomizations, respectively). The final GEAM included four SNPs with
significant partial correlations (Table 1).

Range inference

Of the total number of cells that form the real species’ range, 27.83% had the same environmental scores as
the sampled populations (or, in other words, predicted range #1 allowed to forecast 27.83% of the species’
range); 25.56% of predicted range #1 fell outside real range limits (Fig. 4). Predicted range #2 (the range
inferred by extrapolating GEAM to include all grid cells suitable for any possible combination of alleles
at the four loci in the final model) was similar to the real species’ range. All grid cells in predicted range
#1 were included in predicted range #2, accounting for 36.64 % of its total amount. In turn, predicted
range #2 captured 75.09 % of the actual distribution of P. algirus , with 13.41 % of inferred presences
beyond real range limits. The 24.91% fraction of the real distribution range unpredicted by GEAM mostly
corresponded to the northwest corner of the range, as well as to a large number of small predicted gaps
within it. Nevertheless, predicted range #2 accurately reflected not only the northern and southern edges of
the real distribution range, but also many of the gaps within it, both in northwest Africa (i.e. far from the
sampled populations) and in many Iberian mountain ranges (Fig. 4).

Because complete randomizations provided the most reliable null hypothesis for EAAs (see above), we used
them to infer the species range following the same procedure as described above. We ran a different EAA
per fully randomized dataset because each of them included a different set of randomly generated ‘outliers’
(i.e. SNPs putatively under selection). The mean percentage of inferred range was 29.61 % (SD = 5.581,
range = 27.83 – 79.67), roughly equivalent to predicted range #1 but smaller than predicted range #2. Of
the 500 complete randomization EEAs, only two were able to infer a larger proportion of the species range
than the one predicted by GEAM (P = 0.004, Fig. 5).

Discussion

Extrapolating genotype-environment association analyses to all possible combinations of alleles at a few
outlier loci (i.e. supposed to be locally adaptive) allowed us to explore how much environmental diversity
could be exploited by a given amount of genetic variation. This, in turn, revealed an adaptability threshold
that ultimately defined the distribution boundaries of P. algirus . Thus, our successful inference of a species’
range from the geographical distribution of a few adaptive loci uncovered the role of genotypic variation
at the inter-individual level in shaping a species’ distribution range. Our approach should therefore provide
compelling evidence of how the genetic dynamics of local adaptation underlie distribution patterns.

Environmental Association Analysis

Our intra-population randomization approach showed that the predictive power of GEAM was much larger
than expected by chance. Such high predictive power was based on the genetic diversity found in five closely-
located populations, that included both the eastern and western lineages into which P. algirus is divided
(Carranza et al. 2006; Dı́az et al. 2017); geographical distances among these populations are not correlated
with either genetic or environmental distances (Llanos-Garrido et al. 2019). Yet, a small number of inter-
population randomizations and randomizations by neutral loci also yielded significant models, as expected
from a certain degree of environmental pseudoreplication and genetic aggregation in our data. However, the
rate of significance was close to 5%, i.e. the conventional level of type I error rate for significance in statistical
tests. On the other hand, our complete randomization approach, which included the critical outlier selection
step, produced a relatively large number of significant models (25%, still much lower than the 100% obtained
by the ‘correct’ intra-population approach). This confirmed that outlier analyses were effectively able to sort
through the randomized SNP databases identifying those that explain the greatest variance among arbitrary
subgroups, in such way that the projection of that genetic variance into the environmental PC-space around
the five sampled populations resulted into significant association models. However, the environmental signal
of these randomly genotyped SNPs was significantly smaller than that of real data. This provides strong
support for the idea that the particular SNPs selected by our EAA are good proxies for genetic variants
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involved in local adaptation. In addition, given the low standard error of parameter estimates (Table 1), our
final genotype-environment association model should be regarded as robust.

Range inference accuracy

Our approach combines the advantages of correlational and mechanistic distribution models (Kearney and
Porter 2009), because it relies on genotype-environment correlations based on the geographical distribution
of field-captured individuals, but deals with SNPs putatively under selection that should ultimately be
associated with functional differences in morphology, physiology, and/or behavior. This should allow us
to enlarge the scale of our analysis to the species level (Buckley 2010), because the extrapolation of our
results to all possible allele combinations at loci under selection should cover a much wider range of adaptive
phenotypic variation than the one revealed by the physiological measurements of a restricted sample of
individuals or populations. The only assumption behind this assertion is that all allelic combinations are
actually plausible, as it should be expected if loci are correctly pruned by linkage disequilibrium. Moreover,
as long as local adaptation leads to a heterogeneous distribution of the genotypes adapted to different parts
of the range, our GEAM should be more realistic than mechanistic models because mechanistic models are
based on physiological measurements of individuals, and these may lack the specific adaptations required
to thrive in specific habitats different from their own (such as the ones that determine range boundaries;
Svardal et al. 2015).

Genotype-based range inference was especially accurate at the southern edge of the species’ range, including
a precise delimitation of range gaps in Morocco, where detailed chorological information is available (Bons
and Geniez, 1996). However, we could not test the accuracy of our model for the rest of North Africa due
to the lack of detailed distribution maps of Psammodromus algirus in this area. The only information about
these locations was obtained from the IUCN Red List database (which does not provide data about within-
range gaps) and the GBIF database (which has only 22 records in this area, all of which were predicted by
our model). Nevertheless, the distribution borders suggested by these databases were accurately predicted
by our range inference.

Regarding northern boundaries in the Iberian Peninsula, where detailed corological data are also available
(Pleguezuelos 1997), we did not recover the presence of the species in a relatively large NW area where lizard
populations do occur, inhabiting suitable habitat patches near the cool, humid end of the tested environ-
mental gradient. This is probably because our outlier analyses did not capture all the genetic variation under
selection that is associated with such gradient (see below). Across southern France, the real distribution ran-
ge of the species does not exceed the Rhône River delta, a geographical barrier which could not be predicted
by our method of range inference. However, in the Iberian Peninsula our model successfully recovered the
central and eastern parts of the northern range boundary, as well as several within-range gaps associated
with mountain ranges (around central plateaus and river valleys) and arid regions in south eastern Spain.

The role of niche boundaries and dispersal limitations in shaping range limits

The accuracy of our prediction of range limits suggests that these were revealing ecological niche boundaries.
If other environmental factors (e.g. prey, competitors, predators or parasites) had been constraining range
expansions, our inferred range would have extended beyond real range boundaries, and realized range edges
would be explained by the existence of limitations to expansion before fulfilling all cells within the spatial
projection of the species’ niche (Holt 2003). In fact, this happened only in the northeastern border of the
range, where GEAM predicted the presence of P. algirus beyond the barrier imposed by the Rhône River
delta (niche boundaries would actually allow the species to reach Italy).

Also, our results led us to dismiss the existence of demographical center-border effects such as gene swamping
or increased homozygosity near the edge of the range (Herrera and Bazaga 2008; Polechová et al. 2009;
Pironon et al. 2017). This is because if these processes were acting, they would be limiting the persistence
of marginal populations near range boundaries, and we would systematically infer false positives beyond
range limits (Case and Taper 2000; Bridle and Vines 2007; Lee-Yaw et al. 2018). However, we did wrongly
infer a relatively large inland area of false positives at the northern side of the Pyrenees (Figs. 4 and 5).
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Interestingly, this area was suitable for a small number (< 3) of genotypes, which provides a reasonable
explanation for these false positives, due to the low probability that the few genotypes that could be adapted
to these unoccupied areas were available in nearby marginal populations (Pujol et al. 2009; Dawson et al.
2010; Barton and Etheridge 2018).

The dispersal ability of the genotypes arising at range margins plays an important role in the colonization of
new areas beyond range limits (Simmons and Thomas 2004; Hardie and Hutchings 2010). In our system, for
example, the range of P. algirus would extend ca. 13% beyond its eastern European border if lizards were able
to disperse across the Rhône River. Furthermore, genetic diversity would be fostered by greater dispersion
abilities (Duckworth 2008), which should facilitate the co-occurrence of adaptive allele combinations at range
margins. For instance, the low dispersal rate of these small terrestrial ectotherms would complicate their
expansion towards suitable but unoccupied areas north of the Pyrenees (false positives in our model), given
the synergistic effects of low dispersal rates and a low probability of finding adapted genotypes at nearby
marginal populations. To clarify the role of dispersal ability in the colonization of new locations beyond
range limits, our genotype-based modelling approach should be applied to species showing different dispersal
abilities (Sanford et al. 2006; Dawson et al. 2010), or we could perform transplant experiments beyond range
limits (i.e. manipulating species’ dispersal ability; Hargreaves et al. 2014). By doing this, we should be able
to discern between the role of dispersal ability per se and the genetic contribution of pre-adapted genotypes
arising (or not) at marginal populations (Bridle and Vines 2007; Sexton et al. 2009; Phillipsen et al. 2015).

Number of adapted genotypes per cell across the species’ range

Besides the general pattern by which fewer genotypes were adapted to range boundaries than to core areas,
we found two distinct scenarios within the Iberian Peninsula (Fig. 6). On the one hand, in the northern
half of the peninsula there were many areas suitable for a high number of genotypes. In such context,
there is a high probability of finding the few genotypes that are adapted to the challenging environmental
conditions characteristic of northern boundaries, which should facilitate the establishment of the marginal
populations that shape the corresponding edge (Kawecki 2008; Hardie and Hutchings 2010; Halbritter et
al. 2015). Conversely, most of the southern half of Iberia seemed to be suitable only for a small number
of genotypes, despite the fact thatP. algirus is abundant in this area. However, several small areas locally
suitable for many genotypes were interspersed all across the region. Such areas could therefore play an
important role as sources of specific genetic diversity adapted to the demanding, singular environments
that surround them (Holt and Keitt 2005; Sagarin et al. 2006). The genotyping of populations that inhabit
demanding environments, suitable for a small number of allele combinations, would be crucial to sustain
this assertion (Eckert et al. 2008; Gallet et al. 2018). Similarly, a model simulating the intensity of selection
in both sources and sinks of genetic diversity should be useful to test whether the genetic variants adapted
to demanding environments arise with higher probability in source populations with more relaxed selection
regimes (Alleaume-Benharira et al. 2006).

Adaptability thresholds constrain range limits

Our results suggest that species’ ranges are determined by the maximum possible span of environmental
variation to which adaptive genetic variants are suited. As a consequence, range expansions should be cons-
trained by adaptability thresholds. In our system, it seems that the environmental range to which P. algirus
is adapted is ultimately linked to the amount of genetic variance under selection associated to a specific
bioclimatic gradient. If positive, a range expansion promoted by adaptations towards more extreme environ-
ments should entail the selection of new genetic variants. Moreover, such range expansion would require that
the effect of the new adaptive mutations is additive with respect to the ones that define the adaptability
threshold (Polechová and Barton 2015; Polechová 2018). Whilst our results support this line of reasoning,
further theoretical exploration is needed to uncover the hypothesized positive relationship between the ma-
gnitude of the increment in environmentally correlated additive genetic variance, and the extent of range
expansion that can be achieved (Angert et al. 2008; Polechová et al. 2009).

Overall, we have shown that inferring species’ ranges from the geographical distribution of SNPs under
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selection can be not only very accurate, but also informative about the genetic dynamics that underlie local
adaptation all over a species’ range. Our results suggest that the amount of genetic variability subject to
selection is a determinant of the location and shape of range boundaries. This conclusion sheds light on
the key processes that determine the configuration of distribution ranges, putting forward the importance
of inherent limits to adaptation as an ultimate explanation for the evolution of their shape and boundaries
(Connallon and Sgrò 2018).
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MEN/SEN/avp 15 096 aut, and the Comunidad de Madrid (Consejeŕıa de Medio Ambiente y Ordenación
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Table 1. Parameter estimates for the regression coefficients of the SNPs under selection that entered the
final model.

Parameter estimate ± SD (min, max) P-value ± SD (min, max)

Intercept - 3.630 ± 0.033 (- 3.739, - 3.539) 2.42 x 10-22 ± 2.03 x 10-22 (1.08 x 10-23, 1.92 x 10-21)
SNP1 + 0.605 ± 0.012 (0.567, 0.642) 3.31 x 10-7 ± 1.85 x 10-7 (6.62 x 10-8, 1.46 x 10-6)
SNP2 + 0.488 ± 0.019 (0.430, 0.551) 5.55 x 10-4 ± 2.66 x 10-4 (1.01 x 10-4, 1.71 x 10-3)
SNP3 + 0.347 ± 0.011 (0.315, 0.385) 3.87 x 10-4 ± 1.78 x 10-4 (7.31 x 10-5, 1.49 x 10-3)
SNP4 + 0.366 ± 0.010 (0.328, 0.396) 2.81 x 10-4 ± 1.03 x 10-4 (7.41 x 10-5, 8.68 x 10-4)

Figure legends

Figure 1. Known distribution range of Psammodromus algirus (based on Bons and Geniez 1996 [north-west
Africa] and Pleguezuelos 1997 [Iberian Peninsula]). The gaps within the range that correspond to croplands
or cities are not considered. A question mark is placed where the species is known to inhabit but there is no
accurate information about its distribution (22 presences scattered all over North Africa). The discontinuous
line defines the assumed southern edge of the distribution range according to IUCN.

Figure 2. Bioclimatic gradient defined by the environmental PCA for all the western Mediterranean region
(potential distribution range of P. algirus ). Black circles mark the location of the sampled populations (L
= Lerma, B = Brihuega, N = Navacerrada, P = El Pardo, and A = Aranjuez). On the right, the location
of these populations within the environmental gradient.

Figure 3. Distribution of adjusted R2 values for regression models obtained with four different randomized
datasets (see text for details).

Figure 4. Inferred distribution range. In dark green, predicted range #1 (grid cells with the same en-
vironmental scores than the sampled populations); and in clear green, predicted range #2 (inferred by
extrapolating GEAM to any possible combination of alleles at the loci included in the final model).

Figure 5. Distribution of the proportion of the actual species’ range that was inferred by completely rando-
mized datasets incorporating the outlier selection step (see text for details). The proportion of range inferred

10



P
os

te
d

on
A

u
th

or
ea

17
J
u
n

20
20

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
59

24
20

74
.4

43
20

83
7

—
T

h
is

a
p
re

p
ri

n
t

a
n
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

by GEAM is marked with an arrow.

Figure 6. Temperature map representing the number of adapted genotypes per grid cell according to our
GEAM.
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