

Mitochondrial DNA, 2014; 25(4): 319–320 © 2014 Informa UK Ltd. DOI: 10.3109/19401736.2013.800488

FULL LENGTH RESEARCH PAPER

Mitochondrial genome of the Chung-an ground lizard *Takydromus sylvaticus* (Reptilia: Lacertidae)

Xin-Sheng Tang¹*, Jin-Min Chen^{1,2}*, and Song Huang^{1,3,4}

¹College of Life and Environment Sciences, Huangshan University, Huangshan, Anhui, P.R. China, ²Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, Yunnan, P.R. China, ³State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, P.R. China, and ⁴Huangshan Institute of Ophiology, Huangshan, Anhui, P.R. China

Abstract

The Chung-an ground lizard *Takydromus sylvaticus* is an endemic and long-lost reptile species in China. In this study, its mitochondrial genome (mitogenome) sequence was firstly determined by long PCR and primer walking methods. The genome is 17,838 bp long and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 2 main noncoding regions (the control region and the putative L-strand replication origin). The gene order and contents in the *T. sylvaticus* mitogenome is identical to that found in typical vertebrates, suggesting that it represents an ancestral arrangement. Within the control region, typical conserved domains and distinct repeat regions were identified.

Keywords

Control region, Lacertidae, mitochondrial genome, Takydromus sylvaticus

informa

healthcare

History

Received 31 March 2013 Revised 14 April 2013 Accepted 25 April 2013 Published online 24 June 2013

Although as of March 2013, 2016 complete mitochondrial genome (mitogenome) sequences of vertebrates have been determined, only eight complete mitogenome sequences of the diverse lizard family Lacertidae have been reported. The Chungan ground lizard, Takydromus sylvaticus (Lacertidae), endemic to China, was first described in 1928 based on specimens from Chung-an County (or Wuyishan region), Fujian Province, China (Pope, 1928). After the first discovery, no other individual was reported for more than 70 years until Tang & Xiang (2002) rediscovered this poorly known species in Xiuning County, Anhui Province, China. Subsequently, fieldwork, molecular phylogeny and morphology of T. sylvaticus have been extensively studied (Le et al., 2009; Tang & Chen, 2006; Tang et al., 2007; Yang & Wang, 2010). In this article, we firstly described the mitogenome of T. sylvaticus in order to obtain basic genetic information about this long-lost species.

Because of long tandem duplications or heteroplasmy, some sections of tandem repeats in the control region (CR) cannot be completely sequenced. The nearly complete mitogenome of *T. Sylvaticus* (Genbank accession number JX290083) was sequenced to be 17,838 bp which consisted of 13 typical

vertebrate protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and 1 CR (Table 1). It has the typical vertebrate mitochondrial gene arrangement reviewed in Boore (1999). Most of the T. sylvaticus mitochondrial genes are encoded on the H-strand except for the ND6 gene and eight tRNA genes, which are encoded on the L-strand (Table 1). The overall A + T content of the presented mitogenome is 60.3% (A = 31.1%; G = 13.7%; T = 29.2%; C = 26.0%), reflecting a typical sequence feature of the vertebrate mitogenome. All the 13 protein-coding genes initiate with an ATG start codon, except for ND5, which begin with ATA. Five genes (ATP8, ATP6, ND4L, ND5 and Cyt b) use the most prevalent stop codon for vertebrates, TAA. Two protein-coding genes (COI, ND6) terminate with the stop codons AGG and AGA, respectively. The TAG and TNN (the incomplete stop codons, TA- and T-) as stop codons are observed in other protein-coding genes. The tRNA genes were interspersed among the mitogenome and ranged in size from 62 to 74 bp. In the WANCY cluster of tRNA genes, a 33 bp sequence located between tRNA-Asn and tRNA-Cys genes was considered as the putative L-strand replication origin, O_L . The rRNA genes, 12 s rRNA (950 bp) and 16s rRNA (1529 bp), are located between the tRNA-Phe and tRNA-Leu (UUR) genes and separated by the tRNA-Val gene (Table 1). The major noncoding region, CR (2452 bp) in T. sylvaticus mitogenome was located between the tRNA-Pro and tRNA-Phe genes. The general organization of the CR is similar to the situation of other lizards (Böhme et al., 2007; Podnar et al., 2009; Rui et al., 2009). Two typical conserved domains were detected in T. sylvaticus, namely the conserved sequence blocks domains (CSB-1, CSB-2 and CSB-3) and the termination-associated sequence domains (TAS1 and TAS2). An array of tandem repeats and some repeat units are found in the CR. RIGHTSLINK()

^{*}These authors contributed equally to this work.

Correspondence: S. Huang, College of Life and Environment Sciences, Huangshan University, Huangshan 245041, Anhui, P.R. China. Tel: + 86-559-2546630. Fax: + 86-559-2546630. E-mail: snakeman@hsu.edu.cn

	Position 5'-3'	Size bp/aa	Codon			
Gene/Region			Start	Stop	Anticodon	Spacer (+) or overlap (-)
tRNA-Phe	1–73	73			GAA	
12 S rRNA	74–1023	950				
tRNA-Val	1024-1086	63			TAC	
16S rRNA	1087-2615	1529				
tRNA-Leu (UUR)	2616-2688	73			TAA	
ND1	2689-3657	969 (322)	ATG	TAG		+3
tRNA-Ile	3661-3731	71			GAT	+1
tRNA-Gln	3733-3803 (L)	71			TTG	-1
tRNA-Met	3803-3870	68			CAT	
ND2	3871-4905	1035 (344)	ATG	TAG		$^{-2}$
tRNA-Trp	4904-4977	74			TCA	+1
tRNA-Ala	4979–5046 (L)	68			TGC	+1
tRNA-Asn	5048-5120 (L)	73			GTT	+1
O_I	5154-5122	33				-3
tRNA-Cvs	5152-5213 (L)	62			GCA	+5
tRNA-Tvr	5219–5289 (L)	71			GTA	+1
COL	5291-6835	1545 (514)	ATG	AGG		-5
tRNA-Ser (UCN)	6831–6901 (L)	71			TGA	+3
tRNA-Asp	6905-6971	67			GTC	12
COII	6972-7659	688 (229)	ATG	Т-		
tRNA-Lvs	7660-7723	64			ТТТ	
ATP8	7724-7885	162 (53)	ATG	ТАА		-10
ATP6	7876-8556	681 (226)	ATG	TAA		-1
COIII	8556-9339	784 (261)	ATG	T–		_
tRNA-Glv	9340-9405	66		-	TCC	
ND3	9406-9751	346 (115)	ATG	Т-	100	
tRNA-Arg	9752-9818	67		-	TCG	+4
ND4L	9823-10.119	297 (98)	ATG	TAA		-7
ND4	10.113–11.493	1381 (460)	ATG	Т-		
tRNA-His	11,494–11,561	68		-	GTG	
tRNA-Ser (AGY)	11.562–11.627	66			GCT	-1
tRNA-Leu (CUN)	11.627–11.697	71			TAG	+3
ND5	11.701–13.524	1824 (607)	ATA	ТАА		-5
ND6	13,520-14,035 (L)	516 (171)	ATG	AGA		C C
tRNA-Glu	14.036–14.104 (L)	69		11011	TTC	+2
Cyth	14.107–15.249	1143 (380)	ATG	ТАА	110	+2
tRNA-Thr	15.252-15.318	67			TGT	1 -
tRNA-Pro	15,202 15,510 15,319–15,386 (L)	68			TGG	
Control region	15,387–17,838	2452			100	
Connor region	10,007 17,000	2152				

Acknowledgements

We extend our sincere gratitude to Dr Anita Malhotra (Bangor University) for her valuable comments on this manuscript. We thank Tao Wan and Bao-lin Zhang for their help in the data processing.

Declaration of interest

This work was supported by the National Natural Science Foundation of China (No. 30870290, 31071891), Natural Science Research Project of Anhui Province Education Department (No. KJ2008A088) and the Students Science Research Program of Huangshan University (No. 2010xdkj023). The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

- Böhme MU, Fritzsch G, Tippmann A, Schlegel M, Berendonk TU. (2007). The complete mitochondrial genome of the Green Lizard *Lacerta viridis viridis* (Reptilia: Lacertidae) and its phylogenetic position within squamate reptiles. Gene 394:69–77.
- Le XG, Hong HZ, Wang YY. (2009). A newly recorded reptile from Jiangxi Province: *Platyplacopus sylvaticus*. Sichuan J Zool 28:600 (in Chinese with English abstract).

- Podnar M, Pinsker W, Mayer W. (2009). Complete mitochondrial genomes of three lizard species and the systematic position of the Lacertidae (Squamata). J Zool Syst Evol Res 47:35–41.
- Pope CH. (1928). Seven new reptiles from Fukien Province, China. Am Mus Novit 320:1–2.
- Rui JL, Wang YT, Nie LW. (2009). The complete mitochondrial DNA genome of *Eremias brenchleyi* (Reptilia: Lacertidae) and its phylogeny position within squamata reptiles. Amphibia-Reptilia 30: 25–35.
- Tang XS, Chen QL. (2006). On the taxonomic status of *Platyplacous* sylvaticus based on 12S rRNA gene. Acta Zootax Sinica 31:475–9 (in Chinese with English abstract).
- Tang XS, Lu SQ, Chou WH. (2007). Description of male *Takydromus* sylvaticus (Squamata: Lacertidae) from China, with notes on sexual dimorphism and a revision of the morphological diagnosis of the species. Zool Sci 24:496–503.
- Tang XS, Xiang P. (2002). On the rediscovery and the distribution expansion of the *Platyplacopus sylvaticus*. Chinese J Zool 37:65–6. (in Chinese with English abstract).
- Yang JH, Wang YY. (2010). Range extension of *Takydromus sylvaticus* (Pope, 1928) with notes on morphological variation and sexual dimorphism. Herpetology Notes 3:279–83.