Herpetofauna diversity in the middle of the Southern Carpathians: data from a recent survey (2016–2018) in Cozia National Park (Romania)

Severus-Daniel Covaciu-Marcov, Paula-Vanda Popovici, Alfred-Ștefan Cicort-Lucaciu, István Sas-Kovács, Diana Cupșa & Săra Ferenți

Keywords: amphibians, reptiles, habitats, altitude, forest type, mountains, differences, past

Abstract
Herpetofauna is of interest in protected areas because of the large number of protected species. We studied the herpetofauna of Cozia National Park (CNP) between 2016 and 2018. CNP is situated in the central part of the Southern Romanian Carpathians. We recorded 10 species of amphibian (Salamandra salamandra, Triturus cristatus, Lissotriton vulgaris, Bombina variegata, Hyla arborea, Bufo bufo, Bufo viridis, Pelophylax ridibundus, Rana dalmatina and R. temporaria), and 11 reptile species (Lacerta agilis, L. viridis, Podarcis muralis, Darevskia praticola, Zootoca vivipara, Anguis colchica, Natrix natrix, N. tessellata, Coronella austriaca, Zamenis longissimus and Vipera ammodytes). Reptiles dominate in number of species, number of individuals and distribution records. CNP is situated at the northern limit of the distribution range of some of these reptiles, notably D. praticola and V. ammodytes. Mountain species associated with a colder, moist climate are very rare or even absent. Zootoca vivipara is restricted to the highest areas of Mount Cozia, above 1350 m. Although mountain species are well represented in other Carpathian regions, the warmer, drier climate of CNP and its surroundings has limited their distribution in the area, pushing Z. vivipara to higher and higher altitudes. Lacerta agilis is syntopic with all the other lizard species. In some areas, as many as four lizard species cohabit. The distribution of the herpetofauna in CNP has been negatively influenced by past human activity. The dams on the River Olt have favoured species related to large, stagnant bodies of water, in a region where such habitats were naturally missing. In addition, massive deforestation has decreased the abundance of herpetofauna in many areas of CNP.

Introduction

Protected regions at the periphery of the European Union are crucial for conserving species which are rare in the rest of the EU, although in some of these peripherally located countries, like Romania, species richness is still underestimated (see Hoffmann et al. 2018). In Romania, the network of protected areas is dense and compact (Roşlovicz et al. 2019). The total surface of these protected areas has recently been increased, but the management of the network as a whole is far from efficient (see Iojă et al. 2010; Niculae et al. 2017). Many of the country’s protected areas, including Cozia National Park (CNP), are situated in the Carpathian Mountains, especially in the Southern Carpathians (Iojă et al. 2010). They also rank highest in the number of protected species (Roşlovicz et al. 2019).

CNP is remarkable for its landscapes and biodiversity (Ploaie 2004; Ploaie & Turnock 2001), and its surroundings (Ploaie & Turnock 1999). Some species of invertebrates (Covaciu-Marcov & Ferenți 2019) and reptiles (Iftime & Iftime 2006) in CNP extend to higher altitudes than in other areas of the country. Nevertheless, information on amphibians and reptiles in the Park does not cover the region fully or the species composition (Ploaie 2004; Ploaie & Turnock 2001; Iftime & Iftime 2006, 2007, 2017a). A recent publication (Iftime & Iftime 2019), however, provides new distribution records of herpetofauna, as well as a literature review for the area. Herpetofauna is of high importance to conservation because almost all species in Romania are protected (O.U.G. 57/2007) and present in various protected areas (Iojă et al. 2010). In recent years, many studies have been conducted on herpetofauna both in protected regions (Ghira et al. 2012; Cicort-Lucaciu & Muncuș-Nagy 2013; Covaciu-Marcov et al. 2009a, 2014; Iftime & Iftime 2014; Zamfirescu et al. 2016) and elsewhere (Dincă et al. 2013; Gaceu & Josan 2013; Bogdan et al. 2014; Iftime & Iftime 2015, 2017b). There have also been numerous studies on herpetofauna in protected areas of other countries (Tuberville et al. 2005; de Medeiros Magalhães et al. 2015; Kass et al. 2018; Leyte-Manrique et al. 2018). Any information on amphibian and reptile distribution is considered useful for conservation purposes (Iftime & Iftime 2010; Hollanders et al. 2018; Leyte-Manrique et al. 2018).

In this context, we aimed to investigate the herpetofauna of CNP. Our objectives were: 1. to establish the distribution of the herpetofauna in CNP using
distribution maps; 2. to identify the most important areas from an ecological and zoogeographical point of view; 3. to compare the herpetofauna of CNP with that of neighbouring areas.

Material and Methods

Field activities took place between 2016 and 2018, after Iftime & Iftime had completed their own research in the area (see Iftime & Iftime 2019). CNP lies in the central part of the Southern Carpathians, in the Olt River Gorge region. The gorge, situated at altitudes between 300 m and 400 m, cuts through the Southern Carpathians (Tufescu 1986). CNP is situated at the gorge’s southern end, having a peak with a maximum altitude of 1668 m (Ploaie 2004; Ploaie & Turnock 2001). It was founded in 1990 and is the second oldest National Park in the country (Ploaie 2004). The Park has three distinct regions, each of which belongs to a different mountain massif, separated by the Olt and Lotru rivers (Ploaie 2004). CNP is mostly covered by forests, especially beech, but also oak, hornbeam and a few conifers (Ploaie 2004; Ploaie & Turnock 2001). The Olt and its tributary the Lotru have been modified for hydro-electrical purposes (Rădoane Turnock 2001). Some distribution points overlap. In some cases, we deviated from the access routes and walked for a short distance into the forest. Because of some very inaccessible areas (Ovreiu et al. 2018), there were regions that we could not cross. Nevertheless, we explored large, characteristic areas of CNP, which is generally uniformly covered with forests (Ploaie 2004) over its entire altitudinal range. Thus, we consider that the transects are representative of the region. Transects were walked by 2 or 3 people at a time; one observed and identified the fauna, and the others made notes and took photos. Only a few transects were repeated. Because the transects were walked, they were travelled in both directions. The species distributions were marked on maps. For most species, a point on the map corresponds to one observed individual, although in some cases (notably for lizards) for which the number of observed individuals was too large, some distribution points overlap.

Results

Ten amphibian and 11 reptile species were identified in CNP. The amphibians were: *Salamandra salamandra*, *Triturus cristatus*, *Lissotriton vulgaris*, *Bombina variegata*, *Hyla arborea*, *Bufo bufo*, *Bombina viridis*, *Pelophylax ridibundus*, *Rana dalmatina*, *Rana temporaria*, *Rana ridibunda*, *Bufo viridis*, *Pelophylax perezi*, *Natrix natrix*, *N. tessellata*, *Coronella austriaca*, *Zamenis longissimus* and *Vipera ammodytes*. These 21 species were recorded at 904 distribution points. Amphibians were observed at 361 points (39.93% of the distribution records), and reptiles at 543 (60.06% of the distribution records). The most-represented species in CNP was *P. muralis*, recorded at 157 points, followed by *L. vir-
Table 1 – Herpetofauna distribution points in CNP: percentage abundance of the distribution points, approximate altitudinal range, and distribution in habitat types: 1. natural forest, 2. recovery forest, 3. forest margin, 4. grassy areas (meadows, pastures), 5. mountain streams, 6. small wet areas (riverside coppices with alders, springs with small puddles in open areas), 7. large, artificial, wet areas, 8. rocky areas, 9. abandoned constructions, 10. human settlements.

<table>
<thead>
<tr>
<th>Species</th>
<th>P [%]</th>
<th>Altitude</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salamandra salamandra</td>
<td>8.07</td>
<td>300–800</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Triturus cristatus</td>
<td>0.44</td>
<td>350–750</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>4</td>
</tr>
<tr>
<td>Lissotriton vulgaris</td>
<td>0.55</td>
<td>350–1350</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>5</td>
</tr>
<tr>
<td>Bombina variegata</td>
<td>13.27</td>
<td>300–1200</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>8</td>
</tr>
<tr>
<td>Bufo bufo</td>
<td>5.86</td>
<td>300–1400</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>9</td>
</tr>
<tr>
<td>Bufotes viridis</td>
<td>0.22</td>
<td>350</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>.</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Hylo arbores</td>
<td>0.55</td>
<td>350</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Rana dalmatina</td>
<td>4.09</td>
<td>350–1200</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>9</td>
</tr>
<tr>
<td>Rana temporaria</td>
<td>2.65</td>
<td>350–1350</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Pelophylax ridibundus</td>
<td>4.20</td>
<td>300–500</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>.</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>Lacerta agilis</td>
<td>7.96</td>
<td>350–1600</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>5</td>
</tr>
<tr>
<td>Lacerta viridis</td>
<td>14.82</td>
<td>300–700</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Podarcis muralis</td>
<td>17.36</td>
<td>300–1000</td>
<td>.</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>Darevskia praticola</td>
<td>2.54</td>
<td>350–850</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>Zootoca vivipara</td>
<td>2.21</td>
<td>1350–1650</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>Anguis colchica</td>
<td>5.19</td>
<td>300–1500</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Natrix natrix</td>
<td>3.20</td>
<td>300–750</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Natrix tessellata</td>
<td>3.31</td>
<td>300–400</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Coronella austriaca</td>
<td>0.44</td>
<td>300–400</td>
<td>.</td>
<td>.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Zamenis longissimus</td>
<td>2.54</td>
<td>300–500</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Vipera ammodytes</td>
<td>0.44</td>
<td>350–650</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>8</td>
<td>13</td>
<td>12</td>
<td>8</td>
<td>14</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In most Romanian regions, amphibian species are more numerous than reptile species (Strugariu et al. 2008; Ghira et al. 2012; Dincă et al. 2013; Cicort-Lucaciu & Muncuș-Nagy 2013; Bogdan et al. 2014; Covaci-Marcov et al. 2014; Iftime & Iftime 2011, 2013, 2014, 2017b). CNP is exceptional in having more reptile than amphibian species; there are few other such regions in southern Romania (Krecsák et al. 2004; Covaci-Marcov et al. 2006, 2009a, b; Iftime & Iftime 2008). The number of reptile distribution records is an underestimate, because in the case of lizards occasionally more than one individual was observed per point. Also, in CNP there is a predominance of species which prefer a warmer climate.

Two reptiles, D. praticola and V. ammodytes, are east-Mediterranean species (Tomović et al. 2014), so Romania is at its northern distribution limit (Sillero et al. 2014). Darevskia praticola was not mentioned in the region in the most recent review on reptile distribution in Romania (Cogălniceanu et al. 2013a). Nevertheless, it has been registered in CNP since 2007, where although rare it seems to be present at the highest altitude in the country (Iftime & Iftime 2006). Darevskia praticola is well represented in CNP, even if the region lies at the limit of its suitability area (Čorović et al. 2018). Although it was previously recorded at higher altitudes (Iftime & Iftime 2006), we identified D. praticola only below 850 m, near Stânișoara Monastery, alongside the Carpathian scorpion (Covaci-Marcov & Ferenţ 2019), another species related to a sub-Mediterranean climate (Bunescu 1959).

Darevskia praticola is unevenly distributed in CNP, as previously reported (Iftime & Iftime 2019). It is present only east of the River Olt, on the western side of the Cozia Massif; it was not encountered to the east of the Cozia Massif, either because of the colder climate (Stoenescu et al. 1966) or because of high forest disturbance. This area was heavily deforested in the past (Ploaie 2004; Ploaie & Turnock 2001); the construc-
tion of a narrow-gauge forest railway served to increase the deforestation by giving access to more areas (Turnock 2005). According to local people, large areas were completely cleared of trees. Today, the eastern CNP is covered by coniferous plantations and dense beech and hornbeam regeneration forests.

The populations of *Darevskia praticola* in CNP seem to be isolated, both from the western ones in the Jiu River Gorge (Covaci-Marcov et al. 2009a, Sucea 2019) and from the eastern ones in the Curvature Carpathians (Gherghel et al. 2011). This fragmentation is apparent also from the species’ absence from the areas surrounding CNP, where it has not been attested (Iftime & Iftime 2011, 2013, 2014; Covaci-Marcov et al. 2014; Dincă et al. 2013). While the isolation can be explained by deforestation in some areas (Gherghel et al 2011), this forest species has access to continuous habitats in the lower Southern Carpathians, and climatic models also show suitable areas (Ćorović et al. 2018). The Carpathian scorpion has a similar distribution; populations in the Olt River Gorge seem to be isolated from the ones in the Jiu Gorge and the Curvature Carpathians (Bunescu 1959; Gherghel et al. 2016). Although with fewer distribution records, *V. ammodytes* is present in the same areas of CNP as *D. praticola*. The western part of the Cozia Massif is the eastern distribution limit of this species in the Romanian Carpathians (Cogălniceanu et al. 2013a).

CNP is remarkable also because of the scarcity or absence of some mountain species. This is the case of *Mesotriton alpestris* and *V. berus*, which have not been recorded in CNP, and *Z. vivipara*, which has a very rare and localized distribution. The absence of the first two species distinguishes the herpetofauna of CNP as a whole from that of the Jiu River Gorge (Covaci-Marcov et al. 2009a). In the Jiu Gorge, these species are also rare and present only above 1200 m (Covaci-Marcov et al. 2009a). Both were intensely searched for in the Cozia Massif, to no avail. Even at an altitude of 1350 m, where *Z. vivipara* is already present, we identified only *L. vulgaris*, although we expected to find *M. alpestris*, which is commonly present above 800 m in the eastern proximity of CNP, in the Topolog (Dincă et al. 2013) and Vâlcan river basins (Covaci-Marcov et al. 2014). *V. berus* is also present at higher altitudes some dozens of km from CNP (Krecsák et al. 2004; Iftime 2005; Iftime & Iftime 2010; Dincă et al. 2013). It is possible that the presence of the species in the Jiu Gorge is favoured by the proximity of the Parâng Massif, which reaches altitudes of over 2500 m, and has a colder and more humid climate (Stoenescu et al. 1966). Massifs reaching more than 2500 m are further

![Figure 2 – The distribution (black dots) in CNP of (a) S. salamandra, (b) T. cristatus, (c) L. vulgaris and (d) B. variegata.](image-url)
from CNP, and because of this CNP has a warmer, drier climate (Stoenerescu et al. 1966).

Zootoca vivipara is present only in the highest areas of the Cozia Massif, where it was recently mentioned (Iftime & Iftime 2019); we found it above 1350 m. This is among the highest lower-altitudinal limits for the species in Romania; in other regions it is present from 800 m upwards (Iftime & Iftime 2013) and has even been recorded in plains (Covaciu-Marcov et al. 2008). To the west, in the Jiu River Gorge, its presence starts at 1200 m (Covaciu-Marcov et al. 2009a); in the Jieț Gorge, it is found above 1100 m (Iftime & Iftime 2010); to the east, in the Vâlsan river basin, it descends to 800 m (Covaciu-Marcov et al. 2014). Zootoca vivipara seems completely isolated in the highest part of the Cozia Massif, over an area of just a few km². The Cozia Massif is delimited to the east and north by the Olt and Bâiaș rivers. It is connected to other mountain areas only to the east through a peak of about 750 m, which is below this species’ lowest altitudinal

Figure 3 – The distribution (black dots) in CNP of (a) B. bufo, (b) B. viridis, (c) H. arborea, (d) R. dalmatina, (e) R. temporaria and (f) P. ridibundus
limit in the area. *Zootoca vivipara* habitats in CNP are similar to those of other populations, such as mountain meadows, and the margins of coniferous forests (Iftime 2005; Covaciu-Marcov et al. 2009a). Even at 1600 m, *Z. vivipara* is present alongside *L. agilis*. The high temperatures around the Cozia Massif (Stoanes-cu et al. 1966) pushed *Z. vivipara* populations to higher altitudes, isolating them from the ones in the southern Făgăraş Mountains; thus, they are relicts of a former distribution in the area. Any future climate change could cause their disappearance because they would not find any higher suitable habitats this close to the mountain peak. *Zootoca vivipara* from the Cozia Massif probably belongs to the haplogroup recently described in the Făgăraş Mountains (Velekei et al. 2015), which increases its conservation value. Due to its presence at high altitudes, *Z. vivipara* coexists only with *L. agilis*, although near CNP, in the Vâlcan river basin, it is present alongside *P. muralis* (Covaciu-Marcov et al. 2014). *Lacerta agilis* can coexist with all the other lizard spe-

Figure 4 – The distribution (black dots) in CNP of (a) *L. agilis*, (b) *L. viridis*, (c) *P. muralis*, (d) *D. praticola*, (e) *Z. vivipara* and (f) *A. colchica*.
cies. In the highest areas of the Cozia Massif, *L. agilis* is syntopic with *Z. vivipara*. It is the only lizard present between 1000 m and 1350 m. Below this altitude, it co-occurs with *L. viridis*, *P. muralis* or *D. praticola*. These four lizard species (*L. agilis*, *L. viridis*, *P. muralis* and *D. praticola*) are rarely syntopic (Lotrişoru de Cozia valley). In CNP, *P. muralis* ascends to almost 1000 m along forest roads and sunny slopes.

CNP’s herpetofauna is dominated by forest and rock-loving species, which is to be expected since forests occupy most of the park (Ploaie 2004; Ploaie & Turnock 2001). The rarest amphibian is *B. viridis*, which was recorded at only two points, inside and near human settlements. Despite having been mentioned upstream of CNP (Fuhn 1960; Krecsák et al. 2004), *B. viridis* probably benefits from human settlements in the area because it is a steppe species (Fuhn 1960) with few natural habitats in the Park. It was recently reidentified in the region, but also in or near human settlements (Iftime & Iftime 2019).

Coronella austriaca and *V. ammodytes* are the rarest reptiles. *C. austriaca* is a difficult species to observe (Hartel et al. 2009). *V. ammodytes* is at the limit of its distribution range and requires particularly rare habitats and conditions.

Figure 5 – The distribution (black dots) in CNP of (a) *N. nantrix*, (b) *N. tessellata*, (c) *C. austriaca*, (d) *Z. longissimus* and (e) *V. ammodytes*
The presence of both species in the area has been noted in various publications (see a review in Iftime & Iftime 2019). Some rarely mentioned species, such as *V. ammodytes* (see in Iftime & Iftime 2019), were recorded by us at more distribution points. Because increasing sampling effort leads to evidence of greater species richness (Bâncilă et al. 2014), new field studies could lead to new distribution records of the known species or even of species that we did not encounter. It is also possible that some species were not accurately represented in our maps, as we may have missed their peak activity due to differences in species ecology (Fuhn 1960, Fuhn & Vancea 1961) and weather conditions. Furthermore, not all regions of CNP were covered in the same amount of detail: Mount Naraf, for example, was less well covered. In 2018, the region was affected by strong winds that toppled trees and rendered some tourist routes inaccessible. Despite these methodological shortcomings, it can be seen that the herpetofauna of CNP is richer than that of many areas in the Southern Carpathians (Iftime 2005; Iftime & Iftime 2010, 2013, 2014; Covaciu-Marcov et al. 2014; Dincă et al. 2013), but poorer than in some hotspots, like the Jiu River Gorge (Covaciu-Marcov et al. 2009a): most mountain species associated with colder climate are absent from CNP, which is an oasis for warmer-climate species. Nevertheless, there are similarities between the herpetofauna of CNP and that of other regions in the Southern Carpathians. Newts are rare in CNP, as they are in the Jiu River Gorge, Danube Gorge and Jet valley (Covaciu-Marcov et al. 2009a, b; Iftime & Iftime 2010), where the steep slopes provide very few suitable breeding habitats (Covaciu-Marcov et al. 2009a, b; Iftime & Iftime 2010). Newts in CNP are present either in partially artificial wet areas near the river Olt, or in ponds formed as a result of landslides in the eastern CNP. Only *L. vulgaris* is present in small ponds in the peak area of the Cozia Massif.

Earlier human activities, such as the hydro-electrical works and heavy deforestation, have had an impact on the herpetofauna of CNP. Nowadays, the Olt is a succession of dams, in both the gorge and downstream sections (Radone & Radone 2005). Its tributary, the Lotru, has suffered the most modifications of this type in the country (Cojocar 2014). *P. ridibundus* and *Natrix tessellata* are probably favoured by the dams, which form stagnant bodies of water in an area naturally devoid of such habitats. Because of the lack of historical data, we cannot know how much has been lost due to the dams. The dams are also the reason why the railway was moved; thus, new tunnels were made, and some old ones were abandoned (Turnock 2006; Bellu 2010). Two abandoned tunnels were flooded, but one is above the water level and is used by some amphibians. More than 50 m inside this particular tunnel, we identified *B. variegata* individuals, and even one *B. bufo. Bombina variegata* was recently recorded in caves (Russo et al. 2018) and had already been sighted in abandoned tunnels (Covaciu-Marcov et al. 2017a). This confirms that abandoned railroad tunnels may be used by amphibians even in natural areas (Covaciu-Marcov et al. 2017a).

Other structures left behind by human activity, however, have negative effects on herpetofauna, like the vertical pipes open at ground level in which some amphibia get trapped. Massive deforestation has shaped the appearance of today’s forests in CNP, and in the Southern Carpathian region, between the Olt and the Jiu, there were many sawmills (Turnock 2006). The effects of this activity are still apparent: many forests, especially in the eastern CNP, are regenerated forests or plantations. Herpetofauna is poorer in these areas, and similar cases have already been recorded (Covaciu-Marcov et al. 2009a). Deforestation continues, but on a smaller scale and in the already affected regions.

Nowadays, human impact in CNP is reduced and at a constant level. However, it could increase in the future because of plans for a highway to pass through its northern area, in the Băiașu valley (Anonymous 2018). Băiașu Gorge is an area with a rich herpetofauna, which should be taken into consideration when constructing the highway. As in other regions of Romania (Golan et al. 2017; Covaciu-Marcov et al. 2017b), road traffic already has a negative impact on the herpetofauna of CNP, as numerous individuals are killed, even on roads with little traffic. The richest herpetofauna in CNP is to be found in the southern and western parts of the Cozia Massif, in its higher area, and in the Băiașu, Lotrișor, Călinești and Bețel valleys. These areas should be kept free of human interventions, especially in the natural primary forests, where deforestation should be prohibited (see Schrödl 2019). The eastern areas could be included in restoration programmes, replacing coniferous plantations with native forests. As long as the human impact is maintained within its current limits, the future of CNP’s herpetofauna seems secure.

Acknowledgments

This study was carried out in collaboration with the Cozia National Park Administration. We would like to thank to Diana L. Delibaltov (Google, Mountain View, CA, USA) for revising the language of the manuscript.

References

Anonymous 2018. Acord de Mediu pentru proiectul Autostrada Sibiu – Pitești. ANPM București. [In Romanian].

Bâncilă, R.I., D. Cogălniceanu, R. Plăiașu, M. Tudor, C. Cazacu & T. Hartel 2014. Comparative per-

Hartel, T., K. Öllerer, L. Farczadry, C.I. Moga & R. Băncilă 2009. Using species detectability to infer distribution, habitat use and absence of a cryptic species:

Rozyłlowicz, L., A. Nita, S. Manolache, V.D. Popescu & T. Hartel 2019. Navigating protected areas net-

Török, Z., O. Ghira, I. Sas & S. Zamfirescu 2013. *Ghid sintetic de monitorizare a speciilor comunitare de reptile şi amfibieni din România.* Editura Centrul de Informare Tehnologică Delta Dunării, Tulcea. [In Romanian]

Tufescu, V. 1986. *Harta R. S. România.* Editura Didactică şi Pedagogică, Bucureşti. [In Romanian].

