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A B ST R A CT 

The common practice of using subspecies as conservation targets raises the question of whether efforts are focused on preserving conspicuous 
components of the species’ phenotypic variability rather than evolutionarily significant units. To address this question, in this study we per-
formed a comprehensive morphological and genetic assessment on all the subspecies of wall lizard described for the Aeolian Archipelago (Italy) 
to determine whether they represent distinct evolutionary lineages and/or discrete phenotypic partitions. Further, we applied a monophyly 
test to 70 subspecies belonging to seven wall lizard species occurring in Italy, based on our results and on previous phylogeographic studies. We 
found that none of the Aeolian subspecies represents a distinct evolutionary lineage, despite some morphological differentiation of island popu-
lations across the archipelago, suggesting a very recent origin of island populations and of the observed phenotype variation. Across seven wall 
lizard species, tests revealed that lizard subspecies rarely (< 9% of cases) match evolutionary units. This study demonstrates that intraspecific 
taxonomy of wall lizards is a poor predictor of phylogeographic partitions and evolutionary units, and therefore of limited use (if not dangerous) 
for defining conservation and management units. A better approach would be relying on the integration of genomic and phenotypic data to assess 
the evolutionary significance and conservation value of phenotypic and genetic units within species.
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I N T RO D U CT I O N
Accurate biodiversity assessment and conservation manage-
ment requires a solid understanding of taxonomic status and sys-
tematic relationships among species (Sites and Marshall 2003, 
Isaac 2004, Balakrishnan 2005, De Queiroz 2007, Petit and 
Excoffier 2009, Yeung et al. 2009). However, precisely defining 
the boundary between intra- and inter-specific variability, and its 
taxonomic significance, is not always a simple task. Multiple pro-
cesses can promote the evolution of intraspecific morphological 
diversity in several traits, including genetic drift and founder 
events, and local environmental variability, which in turn can 
determine both phenotypic plasticity and local adaptations  

(Losos 2000, Schluter 2000, O’Hara 2005, Runemark et al. 2010, 
Young and Badyaev 2010). This implies that species with wide 
geographic distributions, or with populations living in geograph-
ically isolated areas such as islands, may exhibit phenotypic vari-
ation across their range (Werner and Sherry 1987, Renaud and 
Millien 2001, Donihue et al. 2016, Prates et al. 2023). These dif-
ferences result in the presence of phenotypically diverse popula-
tions, which have often stimulated their recognition as distinct 
subspecies.

The subspecies concept was first introduced in the mid-
1800s and it has primarily been used to formalize geographical 
variations or units of variation within species ranges based on 
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morphological differences (Simpson 1961, Mayr 1963, 1982, 
1999, Remsen 2010). Thus, while the concept underlying this 
classification has evolved and been implemented over time in 
an increasingly evolutionary perspective (Burgon et al. 2021, 
Burbrink et al. 2022, Prates et al. 2023), the majority of the cur-
rently recognized subspecies (Mayr 1946, Burt 1954, Gillham 
1956, Frost 2020), have been proposed to capture differences 
in morphological traits observable within the species’ range ra-
ther than to delimit evolutionary entities (Burbrink et al. 2000, 
Braby et al. 2012, Prates et al. 2023). Despite this inconsistency, 
the concept of subspecies remains widely used in many aspects 
of biodiversity research and conservation planning (Torstrom et 
al. 2014). As a result, legislators have frequently used described 
subspecies to justify the protection of specific populations or for 
designing protected areas (Zink 2004, Haig et al. 2006). For in-
stance, the EU Habitat directive (Directive 92/43/EEC) iden-
tifies 17 taxa of mammals as ‘priority’ taxa whose conservation 
requires the designation of special areas of conservation, and 
41% of these taxa are subspecies of more widespread species. 
Using subspecies as conservation targets raises the question of 
whether efforts have been directed at safeguarding conspicuous 
components of the species’ phenotypic variability rather than 
evolutionary processes and evolutionarily significant units 
(ESUs, Moritz 1994, Crandall et al. 2000).

Wall lizards of the genus Podarcis Wagler, 1830 offer an excel-
lent case study to assess the bias introduced by the application of 
the subspecies concept to conservation. Podarcis wall lizards are 
currently represented by 26 species (Uetz et al. 2023) and are the 
predominant reptile group of the Mediterranean Basin and its 
islands (Arnold and Ovenden 2002). Indeed, 11 of these species 
are island endemic and 21 of them have populations occurring 
on islands (Poulakakis et al. 2005, Sillero et al. 2014, Psonis et 
al. 2021, Salvi et al. 2021, Yang et al. 2021a, Bonardi et al. 2022). 
Insular populations exhibit a remarkable phenotypic variability 
(Arnold et al. 2007), which has stimulated the description of 
an impressive number of subspecies during the past century, 
often based on weak morphological characters (Böhme 1986, 
Henle and Klaver 1986, Poulakakis et al. 2003, Corti et al. 2010, 
Bellati et al. 2011, Uetz et al. 2023). Most of these subspecies 
are of doubtful value and are currently considered as synonyms 
of more widespread subspecies, whereas others have been raised 
to full species rank in view of their large genetic divergence (e.g. 
Capula 1994a, Podnar et al. 2005, Salvi et al. 2013, 2014, 2017, 
Senczuk et al. 2017, 2019b). This is well exemplified by sub-
species of wall lizards described for islands within the Aeolian 
Archipelago located off the north-east coast of Sicily (southern 
Italy). Until the 1990s, lacertid populations found in the Aeolian 
Islands and islets were recognized as subspecies of either the 
Sicilian wall lizard, Podarcis waglerianus Gistel, 1868, or the 
Italian wall lizard, Podarcis siculus Rafinesque, 1810. Subsequent 
population genetic studies revealed that four of the described 
subspecies were genetically distinct from either species, and 
represented allopatric populations of a new distinct species, 
Podarcis raffonei (Mertens, 1952), that is facing a high extinc-
tion risk given its narrow and fragmented distribution (Capula 
1994a, 2004, Gippoliti et al. 2017). On the other hand, while 
most of the other micro-island subspecies of P. siculus have been 
lately considered not valid (Tiedemann et al. 1994, Corti and 
Lo Cascio 2002, Uetz et al. 2023), some have been the target of 

conservation efforts, for instance through the implementation of 
the Natural Regional Nature Reserve of ‘Isola di Panarea e Scogli 
Viciniori’ (D.A. 483/44 of 25-07-1997). However, the system-
atics of these taxa has never been assessed through genetic data, 
thus their taxonomic and conservation value remains uncertain. 
Estimating patterns of intraspecific genetic diversity allows the 
identification of independent evolutionary units worthy of pro-
tection, which is crucial for defining conservation priorities and 
planning biodiversity management actions (Zink 2004).

In this study, we combined a comprehensive morphological 
and genetic assessment to verify whether the subspecies of P. 
siculus described for the Aeolian Archipelago represent distinct 
evolutionary lineages and discrete phenotypic partitions. The 
significance of using wall lizard subspecies as proxies for conser-
vation units is discussed.

M AT E R I A L  A N D  M ET H O D S

Study system and sampling
The Aeolian Islands are a volcanic archipelago in the southern 
Tyrrhenian Sea, near Sicily and the southern tip of the Italian 
peninsula (Fig. 1). The archipelago is made up of seven main is-
lands (Alicudi, Filicudi, Lipari, Panarea, Salina, Stromboli, and 
Vulcano) and many islets. The seven islands are all thought to 
have been exposed above sea level within a timespan of a few 
hundred thousand years, with the oldest outcrops of the island of 
Lipari emerging around 270 000 years ago (Lucchi et al. 2013). 
The main islands were never connected to mainland Sicily or 
to each other during glacial low sea levels due to the deep ba-
thymetry (between 650 and 2300 m) with the exception of the 
nearby islands Vulcano and Lipari (Lucchi et al. 2013). On the 
other hand, main islands have been connected with their small 
satellite islets during most of the last glacial period until part of 
the Holocene. Despite a relatively young age and geographic iso-
lation, the Aeolian Archipelago hosts endemic fauna and flora, 
making it an interesting laboratory for biogeographic or conser-
vation studies. The Italian wall lizard can be found on all of the 
Aeolian Islands, including many satellite islets (Lo Cascio and 
Corti 2006, Sindaco 2006). Its insular populations have been 
classified as four distinct subspecies, with the nomenclature 
and distribution in the archipelago as follows: Podarcis siculus 
strombolensis (Taddei, 1949) from Stromboli, Panarea, and the 
Basiluzzo Islet; Podarcis siculus liscabiancae (Mertens, 1952) from 
the Lisca Bianca Islet; Podarcis siculus trischittai (Mertens, 1952) 
from the Bottaro Islet; Podarcis siculus siculus from Vulcano and 
other islands (Fig. 1; Corti et al. 2010, Uetz et al. 2023).

We sampled 164 individuals of all currently described P. 
siculus subspecies in September 2021 (Table 1; Supporting 
Information, Table S1). Two additional taxa, originally de-
scribed as subspecies of P. siculus (Podarcis siculus raffonei from 
the Strombolicchio Islet and Podarcis siculus alveraioi from the 
Scoglio Faraglione Islet) are not considered here because genetic 
studies showed they belong to a distinct species, P. raffonei en-
demic to the Aeolian Archipelago (Capula 1994a). For genetic 
comparison, we selected 39 specimens from Stromboli, Panarea 
and the three islets, and also sampled eight individuals of the 
nominal subspecies from the proximal mainland Sicily popula-
tion of Milazzo (Fig. 1; Table 1). A small tissue sample from the 
tail tip of each lizard was collected and stored in pure ethanol 
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Figure 1. A, Geographic range of Podarcis siculus locating the study area (red circle). B, Close-up of the Aeolian Archipelago, with a focus on 
the islands of Stromboli, Panarea, and nearby islets (Bottaro, Lisca Bianca, and Basiluzzo). The sampling locations (symbols) cover the four 
described P. siculus subspecies, defined by morphological data, to be validated with genetic criteria: P. s. siculus (square; photo by D. Salvi); P. s. 
strombolensis (circle; photo by M. van Dijk); P. s. liscabiancae (triangle; photo by B. Gambioli); P. s. trischittai (star; photo by B. Gambioli). The 
aerial images are digital orthophotos with GSD 50 cm of the islands of Panarea and Vulcano taken on 11/15/2015 by Immagini terraItaly tm 
2005 - ©CGR S.p.A. -Parma . The two orthophotos were obtained from the Geoportale Nazionale of the Italian Ministry of the Environment 
(http://www.pcn.minambiente.it/). 
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for genetic analyses. For morphometric comparison, the head of 
each individual was photographed in dorsal view using Olympus 
TG-5 or TG-6 cameras in a photo light box to perform head geo-
metric morphometrics.

DNA extraction, amplification, and sequencing
The genomic DNA of the 47 selected lizards was extracted from 
alcohol-preserved tissues using a standard high-salt protocol 
(Sambrook et al. 1989). Two mitochondrial gene fragments 
were amplified by polymerase chain reaction (PCR): a frag-
ment of cytochrome b (cytb) and a fragment of NADH de-
hydrogenase subunit 4 (nd4). For cytb, we used the primers 
L14253mod (5’- TTTGGATCYCTRTTAGGCCTCTHCC-3’; 
modified from Podnar et al. 2005) and H15425 (Podnar et al. 
2005) with the following cycling protocol: 94 °C (3 min), [94 
°C (30 s), 50 °C (30 s), 72 °C (50 s)] × 35 cycles, 72 °C (5 min). 
For nd4, we used primers and PCR protocols described in pre-
vious studies (Mendes et al. 2016). PCR products were purified 
and sequenced using the forward and reverse primers employed 
for amplification (Genewitz, UK). Forward and reverse se-
quence chromatograms were manually edited and assembled 
into consensus sequences using Geneious v.11.0.12 (Biomatters 
Ltd., Auckland, New Zealand). None of the chromatograms 
showed double peaks, and the translated amino acid sequence of 
both gene fragments did not have any stop codons, confirming 
that nuclear copies (pseudogenes) were not occurring in our 
mitochondrial sequence dataset. Details on sequenced speci-
mens along with GenBank accession numbers are provided in 
Supporting Information, Table S2.

Phylogenetic and network analysis
Sequences were aligned with MAFFT v.7.450 using the G-INS-I 
progressive method algorithm, resulting in an alignment of 765 
positions for cytb and of 862 positions for nd4. To investigate 
whether P. siculus specimens correspond to independent evo-
lutionary lineages, we used a phylogenetic approach based on a 
cytb dataset of 361 sequences, including the 47 newly sequenced 
specimens (Table 1; Supporting Information, Table S1) and 
314 sequences available in GenBank (Supporting Information, 
Table S2) from Podnar et al. (2005) and Senczuk et al. (2017). 
Phylogenetic relationships were inferred using Maximum like-
lihood (ML) and Podarcis muralis Laurenti, 1768Laurenti, 
1768Laurenti, 1768Laurenti, 1768 as an outgroup (Salvi et al. 
2021, Yang et al. 2021a, b). ML trees were inferred in IQ-TREE 

1.6.12 (Nguyen et al. 2015) using the W-IQ-TREE webserver 
(Trifinopoulos et al. 2016). The best substitution model was 
determined by the ModelFinder module, including flexible rate 
heterogeneity across sites (Kalyaanamoorthy et al. 2017), based 
on the Bayesian Information Criterion (BIC). Branch sup-
port was assessed by 1000 replicates of ultrafast bootstrapping 
(Minh et al. 2013, Hoang et al. 2018). Phylogenetic relation-
ships were further investigated through a phylogenetic network 
approach. Haplotype network approaches are the most appro-
priate methods for intraspecific gene evolution, particularly 
when levels of divergence are low (Posada and Crandall 2001). 
First, haplotype networks were constructed based on alignments 
of cytb and nd4 sequences generated for the 47 newly sampled 
specimens. Second, to assess the phylogenetic and haplotype 
diversity of Aeolian populations within the Sicilian clade of P. 
siculus (Senczuk et al. 2017), we constructed a phylogenetic net-
work using all available cytb sequences of P. siculus from Sicily 
(N = 104) and the Aeolian Islands (N = 57) from this study, 
Podnar et al. (2005), and Senczuk et al. (2017). Haplotype 
networks were constructed using the median-joining network 
method in POPART v.1.7 (Bandelt et al. 1999, Leigh and Bryant 
2015).

To assess the congruence between morphological subspecies 
from the Aeolian Islands and molecular phylogenetic data we 
examined whether subspecies were monophyletic in gene trees 
and networks, i.e. whether all individual sequences of a given 
subspecies were more genetically similar to one another than 
to any other subspecies (Moritz 1994, Phillimore and Owens 
2006).

To further explore the overall congruency between morpho-
logical subspecies and phylogenetic units in Podarcis wall lizards, 
we applied this monophyly test to the entire cytb phylogeny of 
P. siculus estimated in this study and to six additional species 
from Italy based on previous phylogeographic studies: Podarcis 
filfolensis (Bedriaga, 1876) (Salvi et al. 2014); Podarcis latastei 
(Bedriaga, 1879) (Senczuk et al. 2018); Podarcis melisellensis 
Braun, 1877 (Podnar et al. 2004); Podarcis muralis (Giovannotti 
et al. 2010, Bellati et al. 2011, Salvi et al. 2013); Podarcis tiliguerta 
(Gmelin, 1789) (Vasconcelos et al. 2006, Salvi et al. 2017); and 
Podarcis waglerianus Gistel, 1868 (Senczuk et al. 2019a). For 
subspecies represented by only one individual in the phylogeny, 
haplotype sharing with the other subspecies was considered as 
indicative of non-monophyly, but the lack of haplotype sharing 
was not considered as indicative of monophyly. The minimum 

Table 1. Samples of P. siculus from the Aeolian Islands used for genetic and morphometric analyses. Sample size for genetic analyses: total 
number of sequences; in parentheses: number of sequences from Senczuk et al. (2017). Sample size for morphometric analyses, in parentheses: 
number of males ♂/number of females ♀.

Subspecies Island No. of individuals for genetic analysis No. of individuals for morphometric analysis

Podarcis siculus liscabiancae Lisca Bianca 9 12 (6♂/6♀)
Podarcis siculus trischittai Bottaro 7 7 (5♂/2♀)
Podarcis siculus strombolensis Basiluzzo 7 10 (6♂/4♀)
Podarcis siculus strombolensis Panarea 8 57 (33♂/24♀)
Podarcis siculus strombolensis Stromboli 14 (6) 31 (21♂/10♀)
Podarcis siculus siculus Milazzo 8 -
Podarcis siculus siculus Vulcano 6 (6) 47 (29♂/18♀)
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criteria for monophyly tests were: (1) the presence of more than 
one individual of a given subspecies in the phylogeny, and (2) 
the presence of more than one subspecies in the phylogeny.

Morphometric analysis
To establish whether the a priori classification of specimens to 
different subspecies was supported by head shape data, we per-
formed a geometric morphometrics (GM) analysis of lizard 
heads from Stromboli, Panarea, and the three islets Basiluzzo, 
Bottaro, and Lisca Bianca, as well as from Vulcano as a refer-
ence outgroup. Head shape GM is a powerful tool to investigate 
phenotypic variation in lizards and has been successfully used 
in taxonomic, ecological, and evolutionary studies on Podarcis 
lizards (Capula et al. 2009, Kaliontzopoulou et al. 2010, Piras 
et al. 2011, Simbula et al. 2021). We used previously published 
digitized pictures with 28 landmarks located at intersections and 
borders of cephalic scales (see Muraro et al. 2022 for a descrip-
tion of landmarks). Males (N = 100) and females (N = 64) were 
analysed separately.

The superimposition of landmark configurations was carried 
out using the Procrustes Generalized Least-Squares (GLS) pro-
cedure implemented in the IMP CoordGen8 software (Sheets 
2014a). Partial Warp (PW) scores, derived from the Thin-
Plate Spline (TPS) of superimposed landmark configurations 
(Procrustes coordinates; reference form = mean of all configur-
ations), were subjected to Principal Component Analysis (PCA) 
in IMP PCAGen8 software (Sheets 2014b). Variation in head 
shape among island populations was assessed on the two first 
Principal Component (PCs), and TPS deformation grids were 
used to visualize changes in head shape along the PCs.

We performed multivariate analyses of variance (MANOVA) 
to test for between-group differences, considering: (1) four pre-
defined taxonomic groups corresponding to the P. siculus siculus 
outgroup reference (Vulcano), P. siculus strombolensis (Panarea, 
Stromboli, Basiluzzo), P. siculus trischittai (Bottaro), and P. siculus 
liscabiancae (Lisca Bianca) and (2) six pre-defined geographical 
groups corresponding to islands. We then used Discriminant 
Function Analysis (DFA) to evaluate confidence in a priori as-
signments of group (1) based on cross-validation assignment 
rates. MANOVA and DFA of PW scores were performed in R 
using the packages car v.3.1-1 (Fox and Weisberg 2019) and 
MASS v.7.3-58.1 (Venables and Ripley 2002).

R E SU LTS

Phylogenetic results
The ML phylogenetic analysis of 361 P. siculus from its whole 
distribution range indicates five well-supported clades (Fig. 
2): an Adriatic clade (ultrafast Bootstrap Support, uBS = 100), 
a Tyrrhenian clade (uBS = 94), two Calabrian clades (C1, 
uBS = 99; C2, uBS = 100), and a Sicilian clade (uBS = 99). 
Sequences of the three Aeolian subspecies of P. siculus were 
placed within the Sicilian clade with high statistical support 
(uBS = 99; Fig. 2). Neither the populations of the Aeolian 
Archipelago, nor any of the Aeolian subspecies of P. siculus form 
monophyletic groups.

Median-joining network analyses corroborate the pat-
terns observed in the ML tree while providing increased 

phylogeographic resolution (Fig. 3). The subspecies P. s. 
strombolensis, P. s. trischittai, and P. s. liscabiancae do not segre-
gate as distinct haplogroups, neither in the cytb network (Fig. 3) 
nor in the nd4 network (Supporting Information, Fig. S1, S2 and 
S3). Populations referred to these subspecies from the islands 
of Bottaro, Lisca Bianca, Panarea, and Vulcano share haplotypes 
among each other and with Sicilian populations. In particular, 
the most common haplotype found in the Aeolian Islands is 
shared among the three subspecies and the nominal subspecies 
from Sicily. The number of haplotypes observed, and their re-
lationships indicate a high haplotype and nucleotide diversity 
within the Sicilian clade, a small proportion of which is repre-
sented within the Aeolian populations.

Results of the monophyly assessment of morphological sub-
species in Podarcis wall lizards show that among 70 subspecies 
(15 from mainland, 55 from islands) belonging to seven Podarcis 
species, only six (8.6%; all from islands) were recovered as 
monophyletic in mitochondrial trees or networks (Table 3).

Morphometric results
Variation in head shape described by the PCA reveals a weak dif-
ferentiation among islands (Fig. 4). The two first PCs accounted 
for 31% and 35% of total variance in males and females, respect-
ively. PC1 differentiates Panarea and the three islets (positive 
values) from Stromboli and Vulcano (negative values), whereas 
PC2 corresponds to within-island variance. The islets of Bottaro, 
Lisca Bianca, and Basiluzzo each represent a subset of the 
morphospace occupied by Panarea (Fig. 4). TPS deformation 
grids showed similar deformations on PC1 and PC2 in males 
and females (Fig. 4), corresponding to changes in head width 
(PC1) and in the length of parietal scales (PC2). Higher PCs 
explained < 9% of total variance. Head shape was significantly 
different among islands (MANOVA; males: d.f. = 5, F = 2.36, 
P = 2e-11; females: d.f.= 5, F = 1.84, P = 0.004), as well as be-
tween a priori defined subspecies (MANOVA; males: d.f. = 3, 
F = 2.09, P = 5e-6; females: d.f. = 3, F = 2.25, P = 0.004). Based 
on Akaike’s Information Criteria (AIC), the between-islands 
model better describes morphometric variation among individ-
uals compared to the between-subspecies model, for both males 
(ΔAIC = 458) and females (ΔAIC = 255). Consistently, the 
DFA of partial warp scores revealed weak confidence in a priori 
assignments into subspecies: 68% for males and 55% for females 
(Table 2).

D I S C U S S I O N
A countless number of animal subspecies have been described 
for insular populations given the striking phenotypic variation 
expressed on islands (Mayr 1963). In many cases, genetic data 
have further corroborated the validity of island subspecies, 
sometimes showing they represent true species requiring special 
conservation attention (Mayr 1982, Braby et al. 2012). A global 
meta-analysis on birds found that a greater proportion of island-
dwelling morphological subspecies coincide with evolutionary 
units defined by molecular data, compared to continental sub-
species (Phillimore and Owens 2006). This is possibly due to 
the fact that, beside phenotypic divergence, island populations 
genetically diverge fast due to physical limitations to gene flow 
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Figure 2. A, Maximum Likelihood phylogenetic tree of Podarcis siculus based on the cytb dataset. Bootstrap values (ultrafast bootstrap support) 
are reported in correspondence of main nodes. Except for the Sicilian clade, the other four main clades are collapsed and depicted with 
different colours. B, Phylogenetic relationships among specimens of the Sicilian clade. For each sequence, the locality and GenBank accession 
number is reported. Sequences of P. siculus from the Aeolian Archipelago are highlighted in green. Bottom left image: adult male of P. siculus 
from Vulcano island (photo by D. Salvi).
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Figure 3. Phylogenetic network and geographic distribution of cytb haplotypes of Podarcis siculus from Sicily and the Aeolian Islands. a, Study 
area including Sicily and the Aeolian Islands, (b) with a focus on the Aeolian Islands, and (c) Panarea and the satellite islets. (d) Haplotype 
median-joining network showing the phylogenetic relationships among cytb haplotypes; haplotypes are represented by circle charts with slices 
coloured according to their geographic origin, and with (chart and slice) size proportional to their frequency.
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caused by geographical isolation and the fixation of neutral al-
leles due to founder events (Mayr 1963). The high level of gen-
etic distinctiveness of island subspecies found in highly vagile 
species like birds led to hypothesizes that a similar (or even 
stronger) pattern would apply for animals with considerably 
lower over-sea dispersal capacity such as lizards. Results from 
this study do not corroborate this expectation, indicating that 
none of the Aeolian Island subspecies of the Italian wall lizard is 
phylogenetically distinct.

The genetic variation of the Aeolian subspecies is shared with 
other Aeolian or Sicilian populations and, despite using fast-
evolving mitochondrial markers (Palumbi et al. 2001), none 
of the island subspecies or populations emerged as a distinct 
phylogenetic lineage (Figs 2, 3). Patterns of haplotype sharing 
and non-monophyly are affected by effective population size 
and sample size. In this respect, it is remarkable that these pat-
terns are evident even if lizard population sizes are large on 
both islands and mainland Sicily, and our sample size for island 

populations was limited (N < 10). The lack of phylogenetic dif-
ferentiation among Aeolian Island populations indicates that 
insufficient time has elapsed for coalescence to take place. This 
would corroborate the hypothesis that the presence of P. siculus 
in many Aeolian Islands and islets is due to recent colonization 
through human translocation (Capula 1994a, Lo Cascio and 
Corti 2006, Ficetola et al. 2021, Bonardi et al. 2022, Sherpa et 
al. 2023). Indeed, Panarea and the satellite islets (Lisca Bianca, 
Dattilo, Bottaro, and Basiluzzo) have been visited by humans 
since the Upper Neolithic (Brea and Cavalier 1968, Martinelli 
2021), and ruins of human settlements from the Bronze Age 
in Panarea (Punta Milazzo dated between 1500 and 1200 B.C.; 
Caracuta et al. 2012) and from the Hellenistic and Roman Ages 
on the Basiluzzo Islet (a Roman villa and a submerged wharf 
dated between 50 B.C. and 50 A.D.; Anzidei et al. 2014) are vis-
ible today. As demonstrated by the submerged archaeological re-
mains in Basiluzzo, these islets experienced relevant subsidence 
over the past 2000 years (Anzidei et al. 2014) and were formerly 

Figure 4. Results of PCA of warp scores (relative warp analysis). Head shape variation among islands on PC1 vs. PC2 in (a) males (diamonds) 
and (b) females (circles). Small symbols: individual scores; large symbols: island centroids. Thin-plate spline deformationgrids showing 
shape variation as maximum : along PC1 in positive (right, light green) andmaximum negative (left, dark green) directionsdeformations; 
along PC1 (PC2=0) and PC2(PC1=0) in positive (top, light green) and negative (bottom, dark green) directions; referenceform (mean of all 
configurations) in black.
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larger and perhaps partially connected one each other (Cavalier 
1994). More recently, during the past few centuries, Basiluzzo 
and Lisca Bianca have been used for agriculture, goat and sheep 
grazing, and sulphur mining (Lo Cascio and Corti 2006 and ref-
erence therein). Such an intense and prolonged human presence 
on these islands provides a likely scenario for the recent intro-
duction of lizards from Panarea to its satellite islets.

Morphometric analyses of head shape, on the other hand, re-
vealed a significant but weak morphological differentiation of 
the four Aeolian subspecies, although no island subspecies was 
diagnosable from all others. More evident is the morphological 
differentiation between island populations across the whole 
archipelago, as previously observed by Muraro et al. (2022). 
The island-specific morphological differences, despite a lack of 
genetic differentiation, indicate that local phenotype variation 
occurred in a short amount of time. Morphological changes in 
insular habitats are known to occur rapidly (Madsen and Shine 
1993, Millien 2006, Eloy de Amorim et al. 2017), such as in the 
case of Podarcis lizards (Herrel et al. 2008, Vervust et al. 2010, 
Taverne et al. 2021). Some of these phenotypic changes can 
emerge over the course of just a few generations due to neutral 
processes linked to island colonization (genetic drift) or to rapid 
adaptation and phenotypic plasticity in response to diverse habi-
tats or resource types (Herrel et al. 2008, Runemark et al. 2010, 
Vervust et al. 2010, Young and Badyaev 2010, Levis et al. 2018, 
Sherpa et al. 2023).

The lack of genetic distinctiveness reported for Aeolian sub-
species of P. siculus is not restricted to this archipelago or to 
this species. Previous range-wide phylogeographic studies of P. 
siculus (Podnar et al. 2005, Senczuk et al. 2017) included 26 of 
the 52 subspecies recognized by Henle et al. (1986) and none 
of them was recovered as phylogenetically distinct in mitochon-
drial or nuclear gene trees (Table 3). Likewise, comprehensive 
phylogeographic surveys on six other Podarcis species occurring 

in Italy revealed that subspecies rarely match evolutionary units 
(Podnar et al. 2004, 2005, Giovannotti et al. 2010, Bellati et al. 
2011, Salvi et al. 2013, 2014, 2017, Senczuk et al. 2017, 2018, 
2019a).

The lack of congruence between traditional subspecies 
boundaries and phylogenetic units in wall lizards is clearly due 
to their extensive phenotypic variability in colour pattern, biom-
etry, and pholidosis (Kaliontzopoulou et al. 2010, 2012, Piras et 
al. 2011), especially in insular environments, combined with the 
tendency of taxonomists in the past century to describe subspe-
cies based on ambiguous and weak morphological characters 
(Braby et al. 2012, Prates et al. 2023). About two hundred sub-
species are currently listed for Podarcis, most of them described 
between 1930 and 1970 to designate island populations (Uetz 
and Stylianou 2018, Uetz et al. 2023). Such subspecies infla-
tion has impacts on systematics, with a complex and confusing 
infra-specific taxonomy, but most importantly hampers conser-
vation applications. Uncertainties concerning the criteria used 
to identify subspecies are exacerbated in conservation because 
legislation is implemented based on uncertain intra-specific 
taxonomy, with rare subsequent re-evaluations of the val-
idity of subspecies during the selection of conservation targets 
(Stanford 2001, Haig et al. 2006, Gippoliti and Amori 2007). 
In this respect, the Aeolian Archipelago provides an emblem-
atic case of the peril of assessing conservation priorities based 
on outdated or inflated taxonomy. On one side, the critically en-
dangered Aeolian wall lizard Podarcis raffonei is underprotected 
because it was recognised as a distinct species two years after the 
adoption of the Habitats Directive (Council Directive 92/43/
EEC; Gippoliti et al. 2017). On the other side, lizard popula-
tions of Panarea and satellite islets, assigned in the past century 
to distinct subspecies that are actually considered as not valid 
(Tiedemann et al. 1994, Corti and Lo Cascio 2002, Uetz et al. 
2023, this study), have been identified as conservation targets 

Table 2. Assignment test of collected P. siculus to the four described Aeolian subspecies based on head shape geometric morphometrics, using 
Discriminant Function Analysis of partial warp scores. In bold: support for a priori subspecies assignments

A priori assignment Statistical assignment

P. siculus siculus P. siculus strombolensis P. siculus trischittai P. siculus liscabiancae

Males
  P. siculus siculus (Vulcano) 0.793 0.138 0.000 0.069
  P. siculus strombolensis 0.200 0.667 0.050 0.083
   Basiluzzo 0.000 0.667 0.167 0.167
   Panarea 0.182 0.727 0.030 0.061
   Stromboli 0.286 0.571 0.048 0.095
  P. siculus trischittai (Bottaro) 0.000 0.400 0.600 0.000
  P. siculus liscabiancae (Lisca Bianca) 0.000 0.667 0.000 0.333
Females
  P. siculus siculus (Vulcano) 0.611 0.222 0.000 0.167
  P. siculus strombolensis 0.184 0.579 0.000 0.237
   Basiluzzo 0.250 0.750 0.000 0.000
   Panarea 0.125 0.583 0.000 0.292
   Stromboli 0.200 0.600 0.000 0.200
  P. siculus trischittai (Bottaro) 0.000 0.000 0.500 0.500
  P. siculus liscabiancae (Lisca Bianca) 0.167 0.333 0.333 0.167
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Table 3. Molecular assessment of phylogenetic monophyly of Podarcis wall lizard’s subspecies. We considered species occurring in Italy for 
which at least two subspecies were sampled in molecular studies. The minimum criterion for monophyly testing of a subspecies is that more 
than one individual (N ≥ 2) of that particular subspecies was sampled in the phylogeny (* flags subspecies with small sample size: N < 5). For 
those subspecies for which a single individual was sampled we applied a criterion of haplotype sharing with other subspecies as an indication 
on non-monophyly (whereas in these cases the lack of haplotype sharing is not sufficient as a proof of monophyly)

Species Subspecies Mainland (M)/ 
Island (I)

Distribution mtDNA 
marker

N Criterion Monophyly Reference

Podarcis 
filfolensis

filfolensis I Malta, Filfola 
island (= Filfla)

nd4 ≥5 Monophyly Yes Salvi et al. 2014

generalensis I Malta, General’s 
Island  
(= Fungus Rock)

≥ 5 Monophyly No Salvi et al. 2014

kieselbachi I Malta, San Paul 
Island  
(= Selmunett)

≥ 5 Monophyly No Salvi et al. 2014

laurentiimuelleri I Italy, Linosa and 
Lampione is-
lands

≥ 5 Monophyly No Salvi et al. 2014

maltensis I Malta, Gozo, 
Kemmuna  
(= Comino)

≥ 5 Monophyly No Salvi et al. 2014

Podarcis 
latastei

lanzai I Italy, Gavi Islet cytb ≥ 5 Monophyly No Senczuck et al. 
2018

latastei I Italy, Ponza Island ≥ 5 Monophyly No Senczuck et al. 
2018

palmarolae I Italy, Palmarola 
Island

≥ 5 Monophyly No Senczuck et al. 
2018

patrizii I Italy, Zannone 
Island

≥ 5 Monophyly Yes Senczuck et al. 
2018

Podarcis 
melisellensis

aeoli I Croatia, Mali 
Opuh Island

cytb 1 Haplotype 
sharing

No Podnar et al. 2004

bokicae I Croatia, Vrtlac 
Island

1 Haplotype 
sharing

No Podnar et al. 2004

caprina I Croatia, Kaprije 
Island

1 Haplotype 
sharing

No Podnar et al. 2004

curzolensis I Croatia, Korčula 
Island

1 Haplotype 
sharing

No Podnar et al. 2004

digenea I Croatia, Svetac 
Island

3 Monophyly No Podnar et al. 2004

fiumana M Croatia ≥ 5 Monophyly No Podnar et al. 2004
galvagnii I Croatia, Kamik 

Islet
2 Monophyly No Podnar et al. 2004

gigantea I Croatia, Sv. 
Andrija Islet

2 Monophyly No Podnar et al. 2004

gigas I Croatia, Vis Island 2 Monophyly No Podnar et al. 2004
jidulae I Croatia, Jidula 

Island
1 Haplotype 

sharing
No Podnar et al. 2004

kornatica I Croatia, Kornati 
Archipelago

2 Monophyly No Podnar et al. 2004

lissana I Croatia, Lissa 
Archipelago

≥ 5 Monophyly No Podnar et al. 2004

melisellensis I Croatia, Brusnik 
Island

3 Monophyly No Podnar et al. 2004

mikavicae I Croatia, Mikavica 
Island

≥ 5 Monophyly No Podnar et al. 2004

pomoensis I Croatia, Jabuka 
Islet

2 Monophyly No Podnar et al. 2004

thetidis I Croatia, Veliki 
Opuh Island

1 Haplotype 
sharing

No Podnar et al. 2004

Podarcis 
muralis

albanica M Bulgaria, Romania, 
Greece (etc.)

cytb ≥ 5 Monophyly No Giovannotti et al. 
2010; Salvi et al. 
2013
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Species Subspecies Mainland (M)/ 
Island (I)

Distribution mtDNA 
marker

N Criterion Monophyly Reference

baldasseronii I Italy, Palmaiola 
Island

4 Monophyly No Bellati et al. 2011

beccarii I Italy, Porto Ercole 
Islet

4 Monophyly No Bellati et al. 2011

breviceps M Italy, Calabria ≥ 5 Monophyly No Giovannotti et al. 
2010; Salvi et al. 
2013

brogniardii M NW Spain, An-
dorra, France, 
W Germany, 
Switzerland

≥ 5 Monophyly No Salvi et al. 2013

colosii I Italy, Elba Island ≥ 5 Monophyly No Bellati et al. 2011
insulanica I Italy, Pianosa 

Island
≥ 5 Monophyly No Bellati et al. 2011

maculiventris M S Switzerland, W 
Austria, N Italy, 
W Slovenia, NW 
Croatia, SE Ger-
many

≥ 5 Monophyly No Giovannotti et al. 
2010; Bellati et 
al. 2011; Salvi et 
al. 2013

marcuccii I Italy, Argentarola 
Islet

3 Monophyly No Bellati et al. 2011

muellerlorenzi I Italy, La Scola Islet 3 Monophyly No Bellati et al. 2011
muralis M Balkans, Aus-

tria, Slovakia, 
Czech Republic, 
Poland, Ukraine, 
NE Italy (the 
Alps), and 
Turkey

≥ 5 Monophyly No Giovannotti et al. 
2010; Salvi et al. 
2013

nigriventris M Italy (incl. Elba 
and  
neighbouring 
islands)

≥ 5 Monophyly No Giovannotti et al. 
2010; Bellati et 
al. 2011; Salvi et 
al. 2013

vinciguerrai I Italy, Gorgona 
Island

2 Monophyly Yes* Bellati et al. 2011

Podarcis 
siculus

astorgae I Croatia, Astorga 
Island

cytb 1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

bagnolensis I Croatia, Bagnola 
(= Banjol) 
Island

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

calabra M Italy, Calabria ≥ 5 Monophyly No Senczuck et al. 
2017

campana M Italy ≥ 5 Monophyly No Senczuck et al. 
2017

campestris M Italy, Croatia, 
France, Slovenia

≥ 5 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

cattaroi M Montenegro, 
Kotor

2 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

cazzae I Croatia, Sušac and 
Pod Kopište 
islands

2 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

cettii I Sardinia, Menorca, 
S Corsica

3 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

dupinici I Croatia, Veli and 
Mali Dupinić

2 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

Table 3. Continued
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Species Subspecies Mainland (M)/ 
Island (I)

Distribution mtDNA 
marker

N Criterion Monophyly Reference

hieroglyphicus M Turkey ≥ 5 Monophyly No Silva-Rocha et al. 
2014

insularum I Croatia, La Longa 
Island

2 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

kolombatovici I Croatia, Velika 
and Mala Kluda 
islets

2 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

laganiensis M Croatia, peninsula 
of Istria

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

mediofasciata I Croatia, Dužac and 
Mala Sestrica 
islets

2 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

nikolici I Croatia, Gusti 
Školj Islet

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

pelagosae I Croatia, Velika 
Palagruža Islet

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

pirosoensis I Croatia, Piroso 
Grande Island 
(= Piruzi Veliki)

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

pohlibensis I Croatia, Pohlib, 
Planičić, Hrid 
Sip, Planik, Olib, 
and Morovnik 
islands

4 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

premudana I Croatia, Premuda, 
Hripa and 
Masarine islands

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

premudensis I Croatia, 
Lutrošnjak Islet

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

pretneri I Croatia, Gustinja 
Cliffs (= 
Gustigna), Pisulj 
(= Pusiglio) 
Cliffs

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

ragusae M Croatia,  
Dubrovnik

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

samogradi I Croatia, Samograd, 
Vrtlić

2 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

siculus M Italy (including 
Sicily and 
many islands), 
Slovenian and 
Croatian Adri-
atic coast and 
offshore islands

≥ 5 Monophyly No Podnar et al. 2005; 
Senczuck et al. 
2017

vesseljuchi I Croatia, Veseljuh 
Island

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

zeii I Croatia, Kal Cliffs 
(= Sc. la Calle)

1 Haplotype 
sharing

No Podnar et al. 2005; 
Senczuck et al. 
2017

Table 3. Continued
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in the establishment of the Nature Reserve of ‘Isola di Panarea 
e Scogli Viciniori’ (Establishment measures: D.A. 483/44 of 
25-07-1997). Likewise, the wall lizard populations of Linosa and 
Lampione (Pelagian Archipelago), once assigned to the subspe-
cies P. filfolensis laurentiimuelleri, have been listed as one of the 
conservation targets of the Natural Reserve ‘Isole di Linosa e 
Lampione’ (D.A. 82/44 of 18-04-2000), although genetic data 
do not support this subspecies and challenge the native status 
of these populations (Capula 1994b, Salvi et al. 2014). Although 
molecular studies help reduce the burden of subspecies inflation, 
conservation legislation often relies on outdated taxonomy based 
on morphological subspecies. It can be contended that only mo-
lecular validated subspecies are eligible as conservation targets. 
However, oddly enough, there are still studies that maintained 
the validity of subspecies that failed any molecular assessment 
of phylogenetic distinction and monophyly, such as in the case 
of three subspecies of the recently recognised Podarcis latastei 
(Senczuk et al. 2018; Table 3). A much safer option would there-
fore be to abandon the subspecies rank as proxy for units of con-
servation in wall lizards and rely on integrative assessment of the 
evolutionary significance of phenotypic and genetic units.

CO N CLU D I N G  R E M A R K S : TO WA R D S  A 
G E N O M I C  D I S S ECT I O N  O F  P H E N OT Y P I C 

VA R I AT I O N  F O R  E VO LU T I O N A RY  A N D  CO N -
S E RVAT I O N  A P P L I C AT I O N S

This study demonstrates that the intraspecific taxonomy of wall 
lizards is a poor predictor of phylogeographic partitions and evo-
lutionary units, and therefore of limited use for defining conser-
vation and management units. However, the use of mitochondrial 
genealogies to assess subspecies limits has its own limitations, 

including applying the phylogenetic concepts to subspecies val-
idation (Patten 2015), and the nature of mitochondrial DNA 
variation. Such an approach implicitly assumes that subspecies 
should represent monophyletic and diagnosable populations 
(Zink 2004, Phillimore and Owens 2006). However, under a co-
alescent neutral model lack of monophyly is often expected for 
recently diverged populations such as those commonly desig-
nated as subspecies (Neigel and Avise 1986, Hudson 1990, Avise 
2000, Hudson and Turelli 2003, Rosenberg 2003). Moreover, 
because the population tree is expected to differ from gene trees 
(Rosenberg 2002), we cannot rely on a single gene tree to infer 
historical population sundering.

A key aspect requiring clarification is whether the units we want 
to delimit or validate (the subspecies) as proxies of conservation 
units should represent historical partitions within a population 
tree, or local adaptation. The concept of ESU has long focused 
on the recognition of sets of populations that have been historic-
ally isolated and, accordingly, are likely to have a distinct potential 
(Moritz 1994). However, many modern subspecies concepts refer 
to ‘heritable geographic variation in phenotype’, and ‘phenotypic 
variation of adaptive significance’ (Crandall et al. 2000, Patten 
2015) that implies that informative genes for subspecies delimi-
tation would be non-neutral, and that in most cases a handful of 
genes sparsely distributed across the genome might be associated 
with the key phenotypic trait that varies geographically.

In this respect, an excellent example is provided by the 
common wall lizard P. muralis. In this lizard, Italian populations 
showing a green dorsal and black ventral coloration have been 
referred to the subspecies P. m. nigriventris. This colour pattern 
is correlated with a suite of sexually selected traits (syndrome) 
including large body and head size, and aggressive behaviours 
(While et al. 2015). Although mitochondrial genealogies have 

Species Subspecies Mainland (M)/ 
Island (I)

Distribution mtDNA 
marker

N Criterion Monophyly Reference

Podarcis 
tiliguerta

rodulphisimonii I France, 
Finocchiarola, 
Isolotto di 
Mezzo and 
Isolotto di Terra 
islets

12S 3 Monophyly No Vasconcelo et al. 
2006, Salvi et al. 
2017

maresi I France, Toro 
Grande and 
Toro Piccolo 
islets

4 Monophyly Yes* Vasconcelo et al. 
2006, Salvi et al. 
2017

ranzii I Italy, Molarotto 
Islet

2 Monophyly Yes* Vasconcelo et al. 
2006, Salvi et al. 
2017

tiliguerta I Italy, Sardinia ≥ 5 Monophyly No Vasconcelo et al. 
2006, Salvi et al. 
2017

Podarcis 
waglerianus

waglerianus I Italy, Sicily, 
Favignana, 
Levanzo islands, 
and La Scola 
islands

nd4 ≥ 5 Monophyly No Senczuk et al. 
2019a

marettimensis I Italy, Marettimo 
Island

≥ 5 Monophyly Yes Senczuk et al. 
2019b

Table 3. Continued
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failed to recover this subspecies as monophyletic (Giovannotti 
et al. 2010, Bellati et al. 2011, Salvi et al. 2013), genomic studies 
have shown that the nigriventris phenotype is associated with 
Single Nucleotide Polymorphism (SNP) variation representing 
only 2% of the genome (Yang et al. 2018). Males with the 
nigriventris phenotype show a competitive advantage in male-
male competition under hot and dry climates (Heathcote et al. 
2016, MacGregor et al. 2017, Ruiz Miñano et al. 2021, 2022). 
This explains why this phenotype has introgressed into a distantly 
related lineage along the north-western Italian coast, but did not 
spread within the same lineage from coastal to inland mountain 
populations (While et al. 2015, Yang et al. 2018, Ruiz Miñano 
et al. 2021, 2022). As a consequence, genomic clusters based 
on thousands of neutral SNPs do not match phenotypic parti-
tions, whereas genomic clusters based on syndrome-associated 
SNPs group all individuals carrying the nigriventris phenotype 
in a monophyletic clade (Yang et al. 2018). These studies ex-
emplify how the complex genomic architecture of intraspecific 
phenotypic variation cannot be captured by discrete intraspe-
cific taxonomic partitions nor by historical partitions, no matter 
how accurately they are defined (mitochondrial genealogies vs. 
thousands of neutral loci across the genome).

Nevertheless, genotyping-by-sequencing data of P. siculus 
show that populations of the eastern Aeolian Islands (from 
Vulcano to Stromboli) form a genetic cluster with populations 
of eastern Sicily (Milazzo), from which they recently originated 
(Sherpa et al. 2023), thus supporting the results from this study. 
However, all island populations can be further differentiated 
in genomic and morphometric traits (this study; Muraro et al. 
2022, Sherpa et al. 2023). Future genome-wide studies of the 
Aeolian populations of P. siculus can unravel the actual import-
ance of historical, selective, and plastic processes underlying the 
observed phenotypic variation.

In conclusion, the burden of available intraspecific names 
assigned to wall lizard populations and their loose association 
with significant evolutionary units suggests that intraspecific 
names rarely help to identify conservation units. We highlight 
that, while some evolutionary and conservation units may well 
fit some subspecies definitions laid upon both the biological 
and the phylogenetic species concept (see for example Patten 
2015), these do not need to be named to receive conservation 
attention. Instead, the best way for defining conservation targets 
is framed upon the integration of phenotypic and population 
genomic data. Population genomic data offer an essential view 
over the genetic basis of the phenotypic variation and its evolu-
tionary and conservation significance, and allow disentangling 
adaptive and sexually selected phenotypic variation from histor-
ical (phylogenetic) units. The increasing availability of genomic 
resources (Formenti et al. 2022) suggests that this approach will 
be suitable for an increasing number of non-model species.
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