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Abstract

Why does the neutral theory, which is based on unrealistic assumptions, predict diversity

patterns so accurately? Answering questions like this requires a radical change in the way

we tackle them. The large number of degrees of freedom of ecosystems pose a

fundamental obstacle to mechanistic modelling. However, there are tools of statistical

physics, such as the maximum entropy formalism (MaxEnt), that allow transcending

particular models to simultaneously work with immense families of models with different

rules and parameters, sharing only well-established features. We applied MaxEnt

allowing species to be ecologically idiosyncratic, instead of constraining them to be

equivalent as the neutral theory does. The answer we found is that neutral models are

just a subset of the majority of plausible models that lead to the same patterns. Small

variations in these patterns naturally lead to the main classical species abundance

distributions, which are thus unified in a single framework.
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I N T R O D U C T I O N

The neutral theory has become one of the pillars of

macroecology (Watterson 1974; Caswell 1976; Hubbell

2001; reviews by Chave 2004; Alonso et al. 2006; Etienne

& Alonso 2006; Hu et al. 2006). However, many ecologists

doubt that the variety of life can be properly described by a

theory based on the assumption that there are no ecological

differences among species (according to the standard

definition; Hubbell 2001, p. 7; Hu et al. 2006). Here, we

introduce a radical change of perspective and start from the

opposite assumption. We rigorously derive the species

abundance distribution (SAD) to be expected when neglect-

ing all ecological similarities among species, instead of

neglecting their differences. We call our species �idiosyn-

cratic�, in contraposition to the �equivalent� species of the

neutral theory. Strikingly, we find exactly the same SAD that

is found in simple neutral models: the log-series. We could

trace an imaginary line between the extremes of strict

neutrality and strict idiosyncrasy and all models on this line

would display a log-series, while moderate departures away

from the line would lead us to the power law and the

skewed log-normal. This suggests a general explanation for

virtually all empirical SADs, and, indirectly, for the main

types of species–area relationship (SAR).

These findings come after a series of observations in the

literature indicating that multiple models, both neutral and

non-neutral, lead to similar diversity patterns (McKane et al.

2000; Chave et al. 2002; McGill 2003a; Mouquet & Loreau

2003; Tilman 2004; Volkov et al. 2005; Pueyo 2006a; Nekola

& Brown 2007; Zillio & Condit 2007). These patterns

transcend particular models and can be best understood by

using approaches that also transcend particular models.

The conventional approach to ecological theory is based

on mechanistic modelling. The use of mechanistic models

often forces us to choose either ignoring the complexity of

nature or using so many parameters that hardly any

reliability and generality can be expected. However,
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complexity is not intrinsically incompatible with reliability

and generality. If species with diverse ecological features

coexist, their singularities may cancel out in community-

level measures and give rise to robust regularities. A

promising alternative to the analysis of particular models

is the study of the statistical properties of large ensembles of

complex ecological models, with the aim of identifying such

regularities. This is also in the spirit of the log-normal

hypothesis, but this hypothesis relies on the precise

assumptions of the central limit theorem, and there is no

clear justification why these should apply to SADs

(Williamson & Gaston 2005). Here we give new results

specifically for SADs, using the maximum entropy formal-

ism (MaxEnt) and other related tools, which are well

established in statistical physics.

The use of MaxEnt in ecology has a venerable but little

known history. Shortly after Jaynes (1957) introduced this

method to statistical physics, MacArthur (1960) used a

mathematically identical procedure and obtained the �broken

stick�. However, this is not a realistic SAD. The right

solution could not be possibly obtained without the key

findings that Jaynes (1968) later added to MaxEnt theory

(see �The prior distribution� section). Thereafter, there have

been a few isolated attempts to apply MaxEnt to species

diversity (Alexeyev & Levich 1997; Levich 2000; Pueyo

2006a; Shipley et al. 2006; see also McGill 2006) and related

areas (e.g. Luriè & Wagensberg 1983; Wagensberg et al.

1991; Hernández et al. 2006; Hijmans & Graham 2006;

Phillips et al. 2006; Pearson et al. 2007) but, as far as we

know, the way we use it to predict the SAD is entirely new.

We compare it with earlier approaches in Appendix A.

Figure 1 places the idiosyncratic theory in the context of

other previous views of community assemblage. The word

�niche� is used in a broader sense than usual, including not

only resources but also, e.g. environmental conditions,

consumers, infectious diseases and mutualists.

Neutral models assume that all species have the same

niche, so neutrality corresponds to �simple niche apportion-

ment rules� and �high niche overlap� (Fig. 1). Some parts of

Hubbell’s (2001) book seem to imply a wider definition of

neutrality, but all mathematical results are based on models

without niche differentiation (this also applies to the recent

extensions of the theory allowing for species-dependent

vital rates; Solé et al. 2004; Etienne et al. 2007; see also

Pueyo 2006a, p. 395). The SADs in these models are mainly

shaped by a particular mechanism: demographic noise. In

principle, a high niche overlap is needed for this mechanism

to dominate.

Engen & Lande (1996a) gave some useful tools to predict

SADs in more complex models. For example, the inset in

the lower left end of Fig. 1 has been obtained with their

method, assuming the classical logistic equation plus a

moderate environmental noise, but no demographic noise.

The absence of demographic noise means that there is no

niche overlap and that this model is not neutral. Indeed, the

predicted SAD is completely different from that of neutral

models. However, we used the same parameter values for all

species (r, K and environmental noise variance e2), thus

introducing a strong symmetry among them. As each species

has a different niche, this symmetry does not imply a

common resource use or shared interactions of any kind,

unlike the main symmetries of neutral models. Therefore, it

is a qualitatively different, more abstract type of symmetry,

which we call �non-neutral symmetry�. The inset in Fig. 1 is

one of the simplest examples, but we could design a non-

neutral symmetric model for any conceivable SAD. The set

of niche apportionment models in Tokeshi (1990; e.g.

dominance pre-emption or dominance decay), in which a fix

and simple rule is sequentially applied to each of the species

in the community, are also non-neutral symmetric models.

Idiosyncrasy is defined by the non-existence of symme-

tries, either of the neutral or the non-neutral type. Each

species is �idiosyncratic� because it is fundamentally different

from any other species. Engen & Lande (1996b) gave an

important step to idiosyncrasy by extending their equations

to sets of species with heterogeneous parameter values,

Complexity of niche apportionment rules
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Figure 1 Types of community assemblage. The most extreme

option in each of the vertices is indicated and illustrated with a

representative example of species abundance distribution (where n

is abundance and P(n) is its probability). �Niche� is used in a broad

sense, including, e.g. environmental conditions, consumers, infec-

tious diseases and mutualists in addition to resources.
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which were assigned at random. However, this method does

not necessarily give a fully idiosyncratic SAD. For example,

if we used a logistic with K following a Gaussian distribution

of parameters lK and rK, and applied a similar criterion to

r and e, we would still be assuming particular values for

{lK, rK, lr, rr, le, re}, and also ignoring possible devia-

tions from the logistic equation, so we would have a residual

of non-neutral symmetry. In this paper, we derive the SAD

that results from randomness in a more fundamental sense,

free of any such residual.

The SAD gives the probability that an unspecified species

will have some given abundance n. It has two components:

(1) The probability for a species chosen at random to

display some given ecological features.

(2) The probability that a species with some given

ecological features has abundance n.

By assuming that all species are ecologically equivalent,

the neutral theory assumes minimum variability in the first

component and maximum in the second. The idiosyncratic

theory assumes maximum variability in the first, and either

small or large variability in the second. The net result is

maximum variability in species abundances in both theories,

for completely different reasons.

T H E I D I O S Y N C R A T I C S P E C I E S A B U N D A N C E

D I S T R I B U T I O N

General setting

Let species i have abundance ni, for i ¼ 1 to S. The

probability of the array {n1,n2,…,nS} is

Pðfn1; n2; . . . ; nSgÞ
¼ P1ðn1ÞP2ðn2jn1Þ � � � PS ðnS jn1; n2; . . . ; nS�1Þ: ð1Þ

Assume that each species is ecologically idiosyncratic. If we

knew the identity of species 1, we could perhaps predict n1

with a small error. However, if species 1 is not specified, we

do not know which of an infinite set of possible models

{m1,m2,…,mW}, W fi ¥, best describes its ecological fea-

tures (these species-level models constitute potential �mod-

ules� for the community-level model). Following the criteria

in the next section, we can properly define the set of models

to ensure that they are equiprobable, with

P1ðn1Þ ¼
1

W

XW
j¼1

Pðn1jmjÞ; ð2Þ

and that the mixture in eqn 2 converges to some well-

defined distribution

lim
W!1

1

W

XW
j¼1

Pðn1jmjÞ ¼ Ppðn1Þ ð3Þ

(e.g. Allen et al. 2001), analogously to the usual convergence

of sums of variables to the Gaussian distribution. For spe-

cies 2,

P2ðn2jn1Þ ¼
1

W

XW
j¼1

Pðn2jmj ; n1Þ: ð4Þ

As we know neither the identity of species 2 nor of species

1, and each model will predict a different interaction be-

tween them, the fact of knowing n1 does not reduce the

uncertainty about n2, so we just have a repetition of

the same problem in different terms, and eqn 4 will lead to

the same limiting distribution as eqn 2:

lim
W!1

1

W

XW
j¼1

Pðn2jmj ; n1Þ ¼ Ppðn2Þ: ð5Þ

The same reasoning applies to each of the remaining spe-

cies. Therefore, eqn 1 becomes

Pðfn1; n2; . . . ; nSgÞ ¼ Ppðn1ÞPpðn2Þ � � � PpðnS Þ: ð6Þ

Abundances enter eqn 6 as independent and identically

distributed variables. However, the way this equation was

derived makes clear that, in this case, �identically distributed�
does not imply �ecologically equivalent� and �independent�
does not imply �with no ecological interaction�. These

properties exclusively hold in the process of predicting the

SAD. By contrast, the abundance distribution of a given

species in different moments of time will not obey Pp: it will

depend on its own model mj (which is different for each

species and is assigned only once) and on the interactions

with other species. This is a key difference with the neutral

theory, which assumes that the abundance distribution of

any particular species in different moments of time is

identical to the SAD.

In information theoretic terms, each of the models

{m1,m2,…,mW} contains some amount of information. For

example, we could roughly measure this amount by

counting the number of words that we need to describe

the assumptions of the model. Informally, we could say that,

when we perform the linear combination in eqns 3 and 5,

the bits of information that are different in different models

cancel out. If we include all conceivable models, the

resulting distribution Pp will be completely void of

information (any bit of information surviving the linear

combination would mean some ecological feature that

systematically appears in many different species and that

needs explanation). This will be the criterion that we will use

to find Pp.

However, Pp will not be our final result. As we have

established no constraint on Pp, we could end up with a

physically impossible outcome, such as infinite abun-

dances. Therefore, we will transform Pp into another
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distribution P, which will no longer be void of

information, but will only include the minimum

information for the SAD to be physically meaningful.

Strictly speaking, we only use MaxEnt in this last

transformation, while the choice of Pp is a previous

unavoidable step to apply it. The distribution Pp is called

�prior distribution�.

The prior distribution

In eqns 3 and 5, Pp arises by assuming that all models are

equally probable. However, equiprobability is ill defined in

this case, because there are different criteria to describe and

distinguish among different models, which will lead to

different asymptotic distributions. This indetermination

arises even in much simpler cases, such as the well-known

Bertrand’s problem of drawing a straight line �at random�
intersecting a circle, which can be carried out in different

ways depending on different criteria of �randomness�.
However, Jaynes gave a solution to Bertrand’s (Jaynes

1973) and other comparable problems (Jaynes 1968).

Above, we advanced that Pp should be void of

information. This is essentially the postulate that Jaynes

established in the problems that he treated, and we abide by

it. However, the information content of Pp cannot be

evaluated by purely mathematical means. We also have to

take into account the physical nature of the variable under

study. Once we know its nature, we can design one or

several mathematical transformations of the variable, such

that, if the statistical distribution changes as a result of the

transformations, we can say that it contains information.

Jaynes� method, which we call �invariance under transfor-

mations�, consists of seeking the distribution that does not

change under the selected transformations.

We first illustrate this method with a variable that is more

intuitive than abundance: spatial position. For example, if an

image of the lizard Podarcis lilfordi subsp. brauni Müller appears

in a picture, it is almost sure that it was taken in the 58-ha islet

of Colom, off the Mediterranean island of Minorca.

Therefore, P. l. brauni gives much information about the

spatial position of the photographer. An image of the

common cockroach Blatta orientalis L. would give much less

information. For a distribution to give no information about

spatial position, it should remain invariant when changing the

centre of coordinates (which can be identified with the

position of the photographer). This is not the case of

P. l. brauni: the statistical distribution of the spatial coordi-

nates of the individual lizards will be very different if we set

the centre of coordinates in the middle of Colom or 10 km

north of the islet. Only the uniform distribution is invariant

under this transformation. Therefore, the correct prior

distribution for spatial positions is the uniform (for example,

this is the distribution of gas molecules in some conditions,

but it is not the distribution of P. l. brauni because the

positions of these lizards do contain information about the

ecology and history of the subspecies). Common cockroaches

do not have a uniform distribution, but their world

distribution is much closer to uniform than P. l. brauni �s.

In the case of abundances, we should find a prior Pp such

that the abundance of an unspecified species gives no

information about any abiotic or biotic factor, because the

different responses expected from each of the models in

eqns 2–5 should cancel out. While the uniform is the

appropriate prior for spatial positions, it is not appropriate

for abundances. This assertion is not superfluous. Most

authors use the uniform as a standard prior distribution

when applying MaxEnt, without a clear justification.

Specifically, MacArthur (1960) used it for SADs (but this

was before Jaynes� 1968 paper about prior distributions).

As an example (with some simplifications), if SADs were

uniform, the set of abundances of different species of

coccolithophores in 100 L of sea water could look like

{1 · 106, 3 · 106, 3 · 106, 6 · 106, 8 · 106, 9 · 106}.

Without loss of generality, assume that their spatial arrange-

ment is random. Then, in 10 L, we would find a set of

abundances close to {1 · 105, 3 · 105, 3 · 105, 6 · 105,

8 · 105, 9 · 105}, and in 1 L we would find something like

{1 · 104, 3 · 104, 3 · 104, 6 · 104, 8 · 104, 9 · 104}.

Therefore, if SADs were uniform, the abundance of an

unspecified species would encode much information on the

sampled volume. An abundance of the order of 105 cells

would suggest a water volume of the order of 10 L. In nature,

such a reliable inference is not possible without knowing the

identity of the species. In NW Mediterranean, 105 cells of

Emiliania huxleyi (Lohmann) Hay and Mohler would suggest a

volume of about 30 L, while 105 cells of Pontosphaera discopora

Schiller would suggest a volume of about 104 L (figures

estimated by simple extrapolation from Margalef 1994). At

least in this particular aspect, natural SADs contain much less

information than the uniform distribution. It follows that the

uniform cannot be the uninformative prior.

The mathematical transformation that we will use to

choose the prior distribution Pp will be the change in

volume or area. This does not imply that invariance in

relation to spatial scale is more important than invariance

in relation to other abiotic or biotic factors. Invariance in

relation to any other factor is a necessary condition for a

correct prior distribution, as scale invariance is. However,

we found no other factor that allows us to discriminate

among abundance distributions in terms of information

content. It should also be made clear that a scale-invariant

prior SAD does not imply that individual species are also

scale invariant: species can have characteristic scales, but

these should be different for different species.

In principle, when seeking the prior distribution of

abundances, we should assume a random placement of
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organisms (which results from sampling the uniform prior

distribution of spatial positions). However, our results are

extremely insensitive to spatial arrangement. If the individ-

uals of a species are randomly located in a large area, the

abundance of this species in small sections of this area will

follow a Poisson distribution. More generally, ecologists use

the negative binomial to fit the spatial abundance distribu-

tion of particular species. The smaller the parameter k of

this distribution, the more clumped the arrangement of the

species. The Poisson is a particular case of the negative

binomial, with k fi ¥. Our results apply whenever the

spatial abundance distribution is a negative binomial,

regardless of k, and even if different species have different

k, regardless of the statistical distribution of k.

The prior distribution Pp that we find is

PpðnÞ ¼ wn�1 ð7Þ

(see Appendix B). Only for this distribution spatial scale

does not affect abundance, and abundance gives no infor-

mation about spatial scale. Equation 7 is equivalent to a

uniform distribution of log (n). This result means that, if we

know nothing about a species, we should consider all orders

of magnitude of its abundance [log (n)] equally likely. This is

the discrete version of Jeffreys� prior (Jaynes 1968), which is

often used for continuous variables in the Bayesian statis-

tical literature. In the ecological literature, this distribution is

called geometric series and was probably the first SAD ever

proposed (Motomura 1932, quoted by May 1975).

A kind of scale invariance had already been found for

some SADs (May 1975; Dewdney 1998; Etienne & Alonso

2005). However, it was a weaker form, because only the type

of equation was preserved, but not the numerical values of

the probability, as needed for a prior distribution and

satisfied by eqn 7.

Although eqn 7 is scale invariant under extremely wide

assumptions, this property could be lost in some situations:

for some types of systematic relationship between abun-

dance and k (we assumed none), and for non-trivial spatial

arrangements that cannot be modelled with a negative

binomial. This does not affect the status of the geometric

series as the prior distribution for abundances (because its

invariance for a random arrangement is a sufficient

condition). However, in these cases the posterior distribu-

tion might contain information about spatial arrangement,

which will have to be incorporated in a later stage. In the

section �Relaxing assumptions: from the log-series to the

log-normal� we give an example.

MaxEnt gives the log-series distribution

Once we have the prior distribution Pp, which contains no

information, MaxEnt allows us to find the posterior

distribution P that incorporates some given information. In

this case, we only introduce the minimum information for

the SAD to be physically meaningful: it should be a proper

distribution and the mean abundance �n should be finite, which

is not the case for eqn 7. While the application of the prin-

ciple of group invariance is case specific, MaxEnt equations

are general. However, we give a complete derivation of

these equations for a better understanding of their meaning.

In eqn 6, we sequentially assign an abundance n to each

of S species. As we do not specify the identities of the

species, the set {n1,n2,…,nS} can be alternatively expressed

as {s1,s2,…,s¥}, where sn is the number of species of

abundance n (s1 singletons, s2 doubletons, etc.). It follows

from eqn 6 that the probability P({sn}) of each set of

species abundances {sn} will follow the multinomial

distribution

PðfsngÞ ¼
S !Q1

n¼1 sn!

Y1
n¼1

PpðnÞsn : ð8Þ

By definition, the most likely {sn} is the set that

maximizes P({sn}). In the simplest case, this set satisfies

sn»SPp(n). However, this solution may violate some con-

straints that we know to hold. For example, the sumP1
n¼ 1 nsn might exceed the total community size. MaxEnt

finds the set {sn}, among the sets that satisfy all of the

constraints, that maximizes P({sn}). The result is expressed

as a new probability distribution: P(n) ¼ sn/S.

Maximizing P({sn}) in eqn 8 is the same as maximizing

1

S
log½PðfsngÞ� ¼

1

S
logðS !Þ � 1

S

X1
n¼ 1

logðsn!Þ

þ
X1
n¼ 1

sn

S
log½PpðnÞ�:

For large x, we can use Stirling’s approximation

logðx!Þ � x logðxÞ � x; ð9Þ

so we have to maximize

DH ¼ �
X1
n¼1

PðnÞ log½PðnÞ� þ
X1
n¼1

PðnÞ log½PpðnÞ�: ð10Þ

The first of the right-hand side terms in eqn 10 is called

�entropy� in statistical physics and information theory

(Shannon 1948). In the simplest case of a uniform Pp

(Jaynes 1957), maximizing DH reduces to maximizing

entropy H; hence, the name of �maximum entropy formal-

ism�. However, here we are interested in the general case of

maximizing the �relative entropy� DH (Kullback 1959).

Often, a constraint j can be expressed as a function hj and a

constant z j as follows:

X1
n¼1

hjðnÞPðnÞ ¼ zj : ð11Þ

Idea and Perspective The idiosyncratic theory of biodiversity 1021

� 2007 Blackwell Publishing Ltd/CNRS



By the definition of probability, a universal constraint for all

proper distributions is that the sum of probabilities must be

one. This is expressed as h0(n) ¼ 1 and z0 ¼ 1. We also

impose a finite mean abundance as a constraint, so h1(n) ¼ n

and z1 ¼ �n.

The distribution {P(n)} that maximizes DH while

satisfying J constraints can be readily found using Lagrange’s

operator:

@

@PðnÞ DH þ
XJ�1

j¼0

kj zj �
X1
m¼1

hjðmÞPðmÞ
 !" #( )

¼ 0;

ð12Þ

where DH is defined as in eqn 10, and {kj} is a set of

unknown constants.

The solution of eqn 12 is

PðnÞ ¼ PpðnÞ exp
XJ�1

j¼0

kj hjðnÞ � 1

" #
: ð13Þ

The constants {kj} can be found by combining eqns 11 and

13.

In the case of the idiosyncratic theory, Pp obeys eqn 7.

We introduce eqn 7 into eqn 13, with two constraints ( J ¼
2): h0 ¼ 1 and h1 ¼ n. The result is the classical log-series

species-abundance distribution

PðnÞ ¼ un�1e�xn: ð14Þ

The parameters u and x can be calculated from �n by solving

the equations (Fisher et al. 1943)

u�1 ¼ ln �n
uþ 1
� �

x ¼ ln u
�n þ 1
� �

(
:

In principle, the exponential decay term in eqn 14 should

be considered a good approximation but not the exact,

because of our use of Stirling’s approximation (eqn 9). On

the other hand, MaxEnt equations become exact if, instead

of using our probabilistic criterion (which is a generalization

of Wallis�; Jaynes 2003, p. 351), they are derived axiomat-

ically (Shore & Johnson 1980). This is a complex technical

point which we do not discuss here.

R E L A X I N G A S S U M P T I O N S : F R O M T H E L O G - S E R I E S

T O T H E L O G - N O R M A L

We have found the log-series distribution for a �hypercom-

plex� community, in which each species is completely

different from any other species. This is an unrealistic

extreme, like complete ecological equivalence. Figure 1

suggests two different ways to decrease complexity, by

moving closer to either neutral models or non-neutral

symmetric models.

The log-series is well known to be predicted by the

type of simple neutral models reviewed by Watterson

(1974), and also used by Hubbell (2001) for meta-

communities. Strictly equivalent species contain no effec-

tive information (in contrast to idiosyncratic species) and

their SAD is also uninformative (like the SAD of

idiosyncratic species). We could conceptualize the path

from neutrality to idiosyncrasy as follows: starting from

strictly neutral species with no bit of information, we

progressively add bits, which are different for different

species and cancel out in the abundance distribution of

unspecified species (i.e. the SAD). The abundance

distributions of specified species progressively diverge,

but the SAD remains invariant.

However, we expect a deviation from the log-series if a

part of the bits follow some regularity that prevents their

cancellation. This is what we call non-neutral symmetry (see

Introduction). The type of modification of the SAD will be

different for different types of symmetry, but it may not be

possible to discriminate among different types if the

modification is modest. Pueyo (2006a) applied Taylor series

expansion and found that small deviations from a log-series

give a bounded power law, and moderate deviations give a

bounded log-normal. �Bounded� means that, above some

abundance, close to the upper end of the distribution,

probabilities decay faster than expected from a standard

power law or a standard log-normal. The equations of

MaxEnt allow us to concisely describe the terms in the

Taylor series as constraints on the distribution. Neverthe-

less, as we have not established these constraints a priori, our

ultimate reason to expect these modifications is the Taylor

series and not MaxEnt.

An SAD deviating from the log-series tells us that the

constraint on mean abundance is not the only reason why

different orders of magnitude of the abundance [log (n)] are

not equally frequent, as we would expect from the prior

distribution (eqn 7). A bounded power law with an

exponent slightly different from one indicates that there

are some mechanisms causing a slight change in the mean

of log (n). When this happens, we should modify the

idiosyncratic theory by including a term h2(n) ¼ log (n) in

eqn 13, thus obtaining:

PðnÞ ¼ un�be�xn: ð15Þ

A bounded log-normal indicates that there are mecha-

nisms causing a slight decrease in the variance of log (n), as

abundances slightly cluster around a characteristic scale. We

introduce h2(n) ¼ log (n) and h3(n) ¼ [ log (n)]2 in eqn 13

and find:

PðnÞ ¼ un�1 exp � 1

2

logðnÞ � l
r

� �2

�xn

" #
: ð16Þ
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The normalization constant u in eqns 14–16 can be

calculated from the other parameters. Equation 14 is a

particular case of eqn 15, for b ¼ 1. On its turn, eqn 15 is a

particular case of eqn 16, for r fi ¥ and l ¼ (1 ) b)r2. The

standard log-normal is eqn 16 with x ¼ 0, i.e. without an

explicit constraint on mean abundance. However, a positive

x would account for the seeming �left skewness� that is often

found when fitting the log-normal to empirical data sets, as

suggested by Pueyo (2006a). This interpretation agrees with

the empirical observations by Williamson & Gaston (2005).

There is a non-neutral symmetric feature so common that

can be considered trivial: sexual reproduction. It is non-

neutral because the �resource� (potential mates) differs

according to species, and symmetric because all species

display a similar relation between species abundance and

�resource� abundance. In sets of species with reproduction

largely or exclusively sexual, we expect the SAD to converge

to a bounded log-normal for large sizes. If the log-series was

indefinitely extrapolatable, most species would have a single

representative in the whole world, but such species would

not be viable (Allee effect). Therefore, we eventually come

back to the log-normal, but it is no longer symmetric and

the reasons to expect it are no longer based on a simplistic

application of the central limit theorem.

Besides sexual reproduction, other mechanisms could

favour a humped SAD. The Janzen–Connell effect might

have this effect (Volkov et al. 2005), and it is empirically

supported (Wills et al. 2006).

Hubbell’s community model is a special case. In spite of

being neutral, it also deviates from the log-series and gives a

log-normal-like SAD. This SAD has been analytically

derived (Vallade & Houchmandzadeh 2003; Volkov et al.

2003; Etienne & Olff 2004; McKane et al. 2004; Etienne

2005; Etienne & Alonso 2005) and does not strictly coincide

with eqn 16. In practice, however, data sets that are well

fitted by this SAD (Volkov et al. 2003) are also well fitted by

the log-normal (McGill 2003b; Pueyo 2006a) and even by

eqn 15 (Azaele et al. 2006). In this model, the landscape is

assumed to be divided into a set of patches, with dispersal

limitation but only at the scale of the patch (distances within

or between patches play no role). This precise spatial scale,

combined with a migration parameter equal for all species,

translates into a characteristic scale in the SAD. Therefore,

the SAD contains information that results from a non-trivial

type of spatial arrangement. This mechanism is not

necessarily more general than the other mechanisms

mentioned above.

D I S C U S S I O N

The log-series is the �maximum entropy� SAD (for a

properly defined �relative entropy�, eqn 10), and slight-

to-moderate decreases in entropy are expected to give the

power law and a skewed log-normal-like distribution. These

results cover virtually all empirical SADs. In particular, the

log-series was one of the first SADs ever fitted to empirical

data (Fisher et al. 1943), which consisted of large samples of

moths. More recently, it has been shown to very well

describe a data set of 105 Mediterranean marine diatoms

(Pueyo 2006a). This means that Mediterranean diatoms have

the SAD that we would consider to be the most likely even

if we knew nothing about diatoms, just from first principles.

The abundance distribution of the 107 species in this data

set can be predicted just from the total number of species

and individuals, with no significant error.

The high entropy of SADs can result from species

heterogeneity (the idiosyncratic theory), from demographic

noise (the neutral theory), or, most likely, from a combina-

tion of both, making both theoretical approaches necessary

for a balanced understanding of nature. The SAD alone

gives no information about the relative importance of these

two components. However, analysing spatio-temporal data

of tropical butterflies, Engen et al. (2002) estimated that

demographic noise only contributes about 15% of the

variability in abundances, which would suggest that idiosyn-

cratic effects are more important than neutral effects. Even

for the tropical forest trees in Barro Colorado (Panama),

which constitute the main case study of the neutral theory,

Hubbell et al. (2001) and Ahumada et al. (2004) gave

convincing evidence that the abundances of different species

are separately regulated (see also John et al. 2007).

The predictions of the neutral theory and the idiosyn-

cratic theory coincide in terms of patterns but strongly differ

in terms of function. If we describe the ecological

community as a channel of information (Margalef 1968),

the capacity of the channel is the same regardless of the

degree of ecological similarity among species, but the use of

this capacity is minimal for strictly equivalent species and

maximal for strictly idiosyncratic species. For the first,

diversity has no effect on stability, because they are

functionally a single species, while, for idiosyncratic species,

we should in principle expect diversity to increase stability at

the limit of a large number of species, because of the

averaging effect (Doak et al. 1998). Similarly, the extinction

rates that the neutral theory predicts have no value for

idiosyncratic communities, where extinctions are not a

simple consequence of ecological drift.

We have shown that common shapes of SADs can be

predicted from extremely general assumptions. This con-

clusion is extensive to common shapes of SARs, because

these shapes are mathematically related to the SADs we

found (Pueyo 2006b). We expect more findings to follow,

because we think we have correctly identified the prior

distribution (eqn 7), which is the Rosetta Stone that allows

translating concepts between statistical physics and macro-

ecology.
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Even more generally, we hope to have shown that

sometimes science can progress without the need of

assuming that nature is less complex than it actually is. Of

course, there are some simplifications in our approach, but

we have moved close to a full acceptance of the complexity

of nature, and simple equations have naturally emerged. If

this was not possible, there would be no simple regularity in

our complex world.
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A P P E N D I X A

Here, we compare our approach to other previous attempts

to apply MaxEnt to species diversity.

MacArthur (1960)

MacArthur applied a mathematical procedure identical to

MaxEnt to predict an SAD, a few years after Jaynes

(1957) introduced MaxEnt to statistical physics. He did

not quote Jaynes and might not have known his work. In

fact, earlier authors such as Boltzmann and Gibbs had

already used similar equations long before Jaynes, whose

main contribution was to justify them in terms of

information theory. MacArthur did not depart from

information theory: he used this formalism to find the

distribution that would result from breaking a stick at

randomly chosen points. The stick was a metaphor of

niche space. The resulting SAD became widely known,

with the name of the �broken stick distribution�, but it

bears little resemblance to empirical SADs. It is close to

an exponential distribution

PðnÞ ¼ u e�xn ð17Þ

(Etienne & Olff 2005 gave a more exact form of this SAD).

The difference between eqn 17 and our eqn 14 is due to the

fact that, instead of explicitly seeking the uninformative

prior distribution as we did, MacArthur implicitly assumed a

uniform prior
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PpðnÞ ¼ const: ð18Þ

(introducing eqn 18 into eqn 13 in the main text with the

same constraints that we use [J ¼ 2, h0 ¼ 1, h1 ¼ n], eqn 17

is found). This is hardly surprising, as MacArthur published

his paper before Jaynes (1968) developed the criteria to

choose prior distributions. MacArthur’s work inspired the

non-neutral symmetric models in Tokeshi (1990) but, as far

as we know, his use of MaxEnt had no continuity in the

following decades.

Alexeyev & Levich (1997) and Levich (2000)

These authors used MaxEnt to predict the SAD, and also

the abundance of particular species as a function of their

resource use. The main difference with our approach is that,

instead of maximizing the relative entropy of the species in

terms of abundance (eqn 10) as we do, they maximized the

entropy of the individuals in terms of species identity, i.e.

they maximized the Shannon–Wienner diversity index (intro-

duced by Margalef 1956):

H ¼ �
XS

i¼1

ni

N
log

ni

N

� �
; ð19Þ

where ni is the abundance of species i. This approach implies

a sharply peaked prior SAD, completely different from either

the uniform or the geometric series. We consider that, in terms

of SAD, our approach is a step forward in relation to Alexeyev

and Levich’s, but that their approach is entirely correct

in terms of predicting the abundance of particular species.

Our application of MaxEnt is based on the assumption

that the probability for an unspecified species to have

abundance n is independent of how many other species have

abundance n, except for a few constraints. Alexeyev and

Levich’s approach implies that the probability for an

unspecified individual to belong to species i is independent

of how many other individuals belong to that species, except

for a few constraints. However, for elementary biological

reasons, this probability does depend on the number of

other individuals in the species, according to a set of rules

that will be approximately the same for all of the individuals

in the same species. The best illustration is the very fact that

organisms are grouped in species, instead of being uniformly

scattered in the space of genomic sequences.

On the other hand, we submit that maximizing eqn 19

under constraints is a correct procedure for inferring the

abundances of particular species as a function of their

ecological features. Even though we know that there are

many rare and a few abundant species, we do not know who

is rare and who is abundant. Therefore, when asking about

particular species, we should give them all the same prior

probability, as eqn 19 does. We lose power to predict the

SAD but we gain power for species-specific predictions.

The SAD will only be approached at the limit, if much

information is introduced in the form of constraints.

Pueyo (2006a)

This author explicitly took into account the problem of the

prior distribution and found the log-series SAD. However,

instead of using a general criterion to choose the prior based

on its information content, as we do in this paper, he derived

the prior from the assumption that population dynamics was

driven by demographic noise. Therefore, he applied MaxEnt

in the context of the neutral theory, and the methods he

used to depart from this theory are unrelated to MaxEnt.

Here, we have shown that MaxEnt gives the log-series

without the need of the assumptions of the neutral theory.

Shipley et al. (2006)

These authors applied MaxEnt by maximizing eqn 19, like

Alexeyev & Levich (1997). However, while Alexeyev and

Levich used this method to predict the abundance of

particular species as a function of their resource use and also

to predict the SAD, Shipley et al. (2006) limited themselves to

predict the abundance of particular species, as a function of

several traits of relevance in relation to ecological succession.

In principle, this approach is entirely correct, while Alexeyev

and Levich’s extension to the SAD is unreliable, for the

reasons stated above. The success in the prediction of

particular abundances using MaxEnt will depend on the

amount and type of information available. This goal is

different and complementary to the goal of our paper.

A P P E N D I X B

Theorem 1

Consider an area inhabited by organisms belonging to

multiple species, with a random spatial arrangement. Select

a fraction a £ 1 of the total area. Let {P(n)} be the SAD in a

(for convenience, here we refer to all abundances n ‡ 0, in

contrast to the rest of the paper, which only deals with the

non-null part of the distribution). The SAD is independent

of a if and only if it follows the geometric series distribution

PðnÞ ¼ w
n
; ð20Þ

where w is a constant.

Theorem 2

Consider an area inhabited by organisms belonging to

multiple species. Select a fraction a � 1 of the total area.
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Let {Pa(na)} be the SAD in a, for all abundances na ‡ 1.

Assume that, if a species has abundance n1 in the larger area,

the probability distribution of the abundance of the same

species in a is a negative binomial

Pðnajn1;kÞ ¼
Cðkþ naÞ

Cðna þ 1ÞCðkÞ
n1a

n1aþ k

� �na k

n1aþ k

� �k

ð21Þ

where k is a clumping parameter and C is the gamma

function (note that the negative binomial is only meaningful

for a � 1). Let different species have either the same or

different values of the parameter k, according to an arbitrary

probability distribution whose density function is {g(k)},

with k independent of n1 and na. Then, the SAD {Pa(na}) in

the smaller area will be independent of a and will equal the

SAD {P1(n1)} in the larger area if and only if the abundance

distribution is the geometric series in eqn 20.

Proof of Theorem 1

As the spatial arrangement is random, decreasing spatial

scale is equivalent to taking a random sample from the larger

area. A random sample can be obtained by excluding a series

of randomly chosen individuals. Therefore, P(n) will remain

invariant when changing a if and only if

DPðnÞ ¼ 0; ð22Þ

where DP(n) is the change in P(n) when a randomly chosen

individual is excluded. This change follows the master

equation

DPðnÞ ¼ nþ 1

N

� �
Pðnþ 1Þ � n

N

� �
PðnÞ; ð23Þ

where N is the total number of individuals at a given scale.

From eqns 22–23,

Pðnþ 1Þ
PðnÞ ¼ 1=ðnþ 1Þ

1=n
: ð24Þ

Equation 24 is satisfied if and only if P(n) has the form in

eqn 20.

Proof of Theorem 2

In the first part of the proof we demonstrate that eqn 20 is a

sufficient condition to have the same SAD in a and in the

larger area, regardless of a. In the second part we

demonstrate that it is a necessary condition too.

First part. From the assumptions of Theorem 2,

PaðnaÞ ¼
Z1
0

gðkÞ
X1
n1¼1

P1ðn1ÞPðnajn1; kÞ
( )

dk: ð25Þ

When the SAD in an area is calculated from an SAD in a

larger area, with a � 1, a continuous distribution can be

assumed for the SAD in the larger area (Pielou 1977, p. 270).

Therefore,

PaðnaÞ ¼
Z1
0

gðkÞ
Z1
0

f1ðn1ÞPðnajn1; kÞdn1

8<
:

9=
;dk; ð26Þ

where

f1ðn1Þ ¼
w
n1

: ð27Þ

Replacing eqns 21 and 27 into eqn 26,

PaðnaÞ ¼ w
Z1
0

gðkÞ
(

Cðkþ naÞ
Cðna þ 1ÞCðkÞ

�
Z1
0

1

n1

 
n1a

n1a þ k

!na
 

k

n1a þ k

!k

dn1

)
dk: ð28Þ

With the change of variables xk = n1a/(n1a + k), and noting

that n1 = k/a [xk /(1 ) xk)] and dn1 = k/a (1 )xk))2dxk,

so that dn1/n1 = xk
)1(1 ) xk))1dxk, eqn 28 becomes

PaðnaÞ ¼ w
Z1
0

gðkÞ
(

Cðkþ naÞ
Cðna þ 1ÞCðkÞ

�
Z1

0

x�1
k ð1� xkÞ�1

x
na

k ð1� xkÞkdxk

)
dk;

PaðnaÞ ¼ w
Z1
0

gðkÞ
(

Cðkþ naÞ
Cðna þ 1ÞCðkÞ

�
Z1

0

x
na�1
k ð1� xkÞk�1

dxk

)
dk:

The integral

Z1

0

x
na�1
k ð1� xkÞk�1

dxk

is the beta function B(k,na), which satisfies (Abramowitz &

Stegun 1965, 6.2.1 and 6.2.2)

Bðk; naÞ ¼
CðkÞCðnaÞ
Cðkþ naÞ

:

Therefore,

PaðnaÞ ¼ w
CðnaÞ

Cðna þ 1Þ

Z1
0

gðkÞdk: ð29Þ

As C(na+1) ¼ naC(na) and
R1

0
gðkÞdk ¼ 1 irrespective of g,

eqn 29 gives rise to eqn 20.
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Second part. The set {Pa(na)} is independent of a if and only

if

@PaðnÞ
@a

¼ 0: ð30Þ

From eqns 25 and 30,

@PaðnaÞ
@a

¼
Z1
0

@gðkÞ
@a

X1
n1¼1

P1ðn1ÞPðnajn1; kÞ
( )

dk

þ
Z1
0

gðkÞ
X1
n1¼1

P1ðn1Þ
@Pðnajn1; kÞ

@a

( )
dk ¼ 0:

The sum
P1

n1¼1 P1ðn1ÞPðnajn1; kÞ equals Pa(na) in the par-

ticular case in which k is the same for all species. As we

impose that Pa(n) ¼ P1(n) regardless of k, and regardless of

the distribution of k if k takes different values, we can treat

this sum as a constant and we obtain

P1ðn1Þ
Z1
0

@gðkÞ
@a

dkþ
Z1
0

gðkÞ
X1
n1¼1

P1ðn1Þ
@Pðnajn1;kÞ

@a

( )
dk¼0:

As

Z1
0

@gðkÞ
@a

dk ¼ @

@a

Z1
0

gðkÞdk ¼ 0

because
R1
0

gðkÞdk ¼ 1 irrespective of a,

Z1
0

gðkÞ
X1
n1¼1

P1ðn1Þ
@Pðnajn1; kÞ

@a

( )
dk ¼ 0: ð31Þ

Equation 21 can also be expressed as

Pðnajn1; kÞ ¼
Cðkþ naÞ

Cðna þ 1ÞCðkÞ kk ðn1aÞna

ðn1a þ kÞnaþk
ð32Þ

Replacing eqn 32 into eqn 25

PaðnaÞ ¼
Z1
0

gðkÞ Cðkþ naÞ
Cðna þ 1ÞCðkÞ kk

�
X1
n1¼1

P1ðn1Þ
ðn1aÞna

ðn1a þ kÞnaþk

( )
dk; ð33Þ

and replacing eqn 32 into eqn 31,

Z1
0

gðkÞ Cðkþ naÞ
Cðna þ 1ÞCðkÞ kk

�
(X1

n1¼1

P1ðn1Þ
@

@a

"
ðn1aÞna

ðn1a þ kÞnaþk

#)
dk ¼ 0;

Z1
0

gðkÞ Cðkþ naÞ
Cðnaþ1ÞCðkÞk

k

(X1
n1¼1

P1ðn1Þ
" 

na

a

!
ðn1aÞna

ðn1aþkÞnaþk

�
 

n1þk

a

!
ðn1aÞnaþ1

ðn1aþkÞnaþkþ1

#)
dk¼ 0;

�na

a

�Z1
0

gðkÞ CðkþnaÞ
Cðnaþ1ÞCðkÞk

k

(X1
n1¼1

P1ðn1Þ
ðn1aÞna

ðn1aþkÞnaþk

)
dk

�
 

naþ1

a

!Z1
0

gðkÞ Cðkþnaþ1Þ
Cðnaþ2ÞCðkÞk

k

�
(X1

n1¼1

P1ðn1Þ
ðn1aÞnaþ1

ðn1aþkÞnaþ1þk

)
dk¼0

ð34Þ
Comparing with eqn 33, it is readily apparent that eqn 34 is

equivalent to

naPaðnaÞ � ðna þ 1ÞPaðna þ 1Þ ¼ 0: ð35Þ

On its turn, eqn 35 is equivalent to eqn 24. Therefore, the

SAD has the form in eqn 20.

Remark 1

The probabilities in the geometric series (eqn 20) only add

up to 1 for w fi 0. This type of behaviour is frequent in

prior distributions (Jaynes 2003). It is more easily

understood by considering that, in a continuous approx-

imation, the geometric series is equivalent to a uniform

distribution of log(n), with density of probability w. As we

have established no constraint on n yet, log(n) has the

same odds of taking any value from 0 to infinity.

Therefore, the probability of any particular value is

vanishingly small (this compares with the probability of

the position of a particle for which we have no

information: it will be a uniform distribution in the

whole universe, with a vanishing probability for any

particular position). This effect disappears when the set of

abundances is constrained in eqn 13.

Editor, Thomas Crist

Manuscript received 20 March 2007

First decision made 21 April 2007

Second decision made 27 June 2007

Manuscript accepted 9 July 2007

1028 S. Pueyo, F. He and T. Zillio Idea and Perspective

� 2007 Blackwell Publishing Ltd/CNRS


