AG magazine (in print)
Online magazine (pdf)
Online articles (html)
Literature- and poster projects
of the real lizards, family Lacertidae
Mesalina simoni (BOETTGER, 1881)
Argaz, H. & Brito, J.C. & Fahd, S. & Martinez-Freiria, F. & Boudajbir, C. & Geniez, P. (2020) -
Morocco is one of the richest countries in the Mediterranean Basin, comprising 120 terrestrial amphibians and reptiles, of which 30 are endemic species (25%). Remarkably, the genus Chalcides hits top record with nine endemic species out of 16 existing species. Updated distribution maps were elaborated for each species. A new species was added to the taxonomic list of endemics of Morocco. Three main distribution patterns regarding the occupied area and number of localities were identified: 1/ large, extensive, or widespread, 2/ punctual, and 3/ restricted distribution. Three main distribution patterns regarding the occupied region were identified: 1/ mountain, 2/ Atlantic, and 3/ southern Morocco. The areas apparently accommodating most of the endemic species are located within the Tangitan Peninsula, Atlantic coast, Rif Massif, and High and Middle Atlas.
Arnold, E.N. (1986) -
The basic anatomy of the lacertid hemipenis (intromittent organ) and methods for its investigation are described. In many members of the Lacertidae, the hemipenis has a structure quite unlike that of other squamate reptiles: the distal lobes of the retracted organ are complexly folded and there is a well-defined supporting structure of dense connective tissue, the armature. This incorporates blood sinuses and has an intramuscular portion embedded in the m. retractor penis magnus and two club-shaped bodies, the clavulae, that support the lobes in the erect organ. Unarmatured hemipenes occur in some lacertids and, like those of other squamates, possess sac-like lobes in the retracted state, but they are singular in having the lobes invested by the m. retractor penis magnus. It is argued that many of these apparently primitive hemipenes are in fact secondary derivatives of the armatured type. There is considerable inter-specific variation in hemipenial structure which is described systematically. In some cases this involves differences in size, asymmetry and simplification, which may arise as physical isolating mechanisms and is useful in distinguishing otherwise very similar species, particularly in the genus Mesalina (p. 1253). Other shared derived hemipenial features provide useful information about relationships between species and higher taxa and a summary of the hypotheses that they support is given (p. 1254).
The structure of copulatory organs is used very widely in systematics, both for differentiating species and for working out relationships. Differences between taxa may arise from a variety of sources, including non-homology, differences in other parts of the animal, direct selection on copulatory organs, development of physical isolating mechanisms and pleiotropic events. Physical isolating mechanisms seem likely to account for the abrupt differences, involving size, asymmetry and simplifications, that are useful in distinguishing very similar lacertid species. Although these differences usually seem to arise at the end of a speciation event they can simultaneously be the initiating mechanism in a second one. Copulatory organs appear to have high inherent stability, probably resulting from frequent location in strongly homoeostatic environments, single function, insensitivity to niche shift and inertia due to the need to conform to the genitalia of the opposite sex. This stability may be overridden at times by direct selection on the organs themselves or pleiotropic events. Such changes tend to be retained because efficiency in copulation depends not on any absolute genital architecture but on close conformity of the organs. It is the combination of relative stability and tangible input of varied change, which tends to be retained, that so often makes these structures good indicators of relationship.
Boettger, O. (1881) -
Boettger, O. (1883) -
Bons, J. (1972) -
Cette note est destinée à faire le point sur le peuplement herpétologique du Maroc. Elle comprend: — Une liste des formes effectivement présentes au Maroc, avec les affinités biogéographiques des espèces, et éventuellement les travaux récents où ces formes sont étudiées. — Des commentaires sur les espèces africaines douteuses en Europe et européennes douteuses en Afrique. — Une liste des espèces à rechercher au Maroc. — Une discussion sommaire sur la systématique de certaines espèces marocaines.
Bons, J. & Bons, N. (1959) -
Bouazza, A. (2018) -
Hosseinian Yousefkhani, S.S. & Marmol Marin, G.M.D. & Rastegar-Pouyani, N. & Rastegar-Pouyani, E. (2015) -
In this study we review the species of lizards in the genus Mesalina (Lacertidae) and present a new key for their identification. We also obtained five photos of each species from the British Museum of Natural History that illustrate the dorsal, lateral (right and left), and ventral views of the head and the femoral pores of each species. The papers with the original descriptions of each species were reviewed and used in preparation of the key. Some remarks about the habitat, natural history, updated distribution map and previous taxonomic changes are explained.
Kapli, P. & Lymberakis, P. & Crochet, P.-A. & Geniez, P. & Brito, J.C. & Almutairi, M. & Ahmadzadeh, F. & Schmitz, A. & Wilms, T. & Rastegar-Pouyani, N. & Poulakakis, N. (2015) -
Aim We explored the phylogenetic relationships of species of Mesalina, using one nuclear and two mitochondrial loci. This genus of lacertid lizards is widely distributed in North Africa and the Middle East and our goal was to develop a scenario capable of explaining the current distribution and evolutionary patterns within the genus in the context of the wider historical biogeography of the region. Location North Africa and the Middle East. Methods The assembled dataset consisted of 193 Mesalina individuals, representing 12 species distributed across the geographical range of the genus. Bayesian and maximum likelihood methods were used to support phylogenetic inferences on two mitochondrial (cytochrome b and 16S ribosomal RNA) and one nuclear (beta-fibrinogen intron 7) markers. Palaeogeographical and palaeoclimatic data were used to support the inferred phylogeographical patterns. Results Mesalina lizards exhibit high genetic diversity and complex phylogenetic patterns, leading to an unsatisfactory systematic hypothesis of one paraphyletic and three polyphyletic traditional species. The estimated divergence times place the origin of the genus in the early Miocene (c. 22 Ma) and the divergence of most currently recognized species in the middle to late Miocene. The inferred ancestral distribution suggests that the genus and most of its species originated somewhere in Arabia or the Middle East, with the exception of the Mesalina olivieri complex, which may be of African origin. Main conclusions Phylogenetic reconstruction based on the three loci studied suggests a higher than expected cryptic diversity of Mesalina in North Africa and the Middle East. We suggest that the tectonic movements of the Arabian plate, coupled with the climatic changes occurring since the Miocene, may be responsible for the phylogeographical patterns of North African and Middle Eastern Mesalina.
Lewin, A. & Feldman, A. & Bauer, A.M. & Belmaker, J. & Broadley, D.G. & Chirio, L. & Itescu, Y. & LeBreton, M. & Maza, E. & Meirte, D. & Nagy, Z.T. & Novosolov, M. & Roll, U. & Tallowin, O. & Trape, J.-F. & Vidan, E. & Meiri, S. (2016) -
Aim To map and assess the richness patterns of reptiles (and included groups: amphisbaenians, crocodiles, lizards, snakes and turtles) in Africa, quantify the overlap in species richness of reptiles (and included groups) with the other terrestrial vertebrate classes, investigate the environmental correlates underlying these patterns, and evaluate the role of range size on richness patterns. Location Africa. Methods We assembled a data set of distributions of all African reptile species. We tested the spatial congruence of reptile richness with that of amphibians, birds and mammals. We further tested the relative importance of temperature, precipitation, elevation range and net primary productivity for species richness over two spatial scales (ecoregions and 1° grids). We arranged reptile and vertebrate groups into range-size quartiles in order to evaluate the role of range size in producing richness patterns. Results Reptile, amphibian, bird and mammal richness are largely congruent (r = 0.79–0.86) and respond similarly to environmental variables (mainly productivity and precipitation). Ecoregion size accounts for more variation in the richness of reptiles than in that of other groups. Lizard distributions are distinct with several areas of high species richness where other vertebrate groups (including snakes) are species-poor, especially in arid ecoregions. Habitat heterogeneity is the best predictor of narrow-ranging species, but remains relatively important in explaining lizard richness even for species with large range sizes. Main conclusions Reptile richness varies with similar environmental variables as the other vertebrates in Africa, reflecting the disproportionate influence of snakes on reptile richness, a result of their large ranges. Richness gradients of narrow-ranged vertebrates differ from those of widespread taxa, which may demonstrate different centres of endemism for reptile subclades in Africa. Lizard richness varies mostly with habitat heterogeneity independent of range size, which suggests that the difference in response of lizards is due to their ecological characteristics. These results, over two spatial scales and multiple range-size quartiles, allow us to reliably interpret the influence of environmental variables on patterns of reptile richness and congruency.
Mayer, W. (1989) -
Taxonomic changes and new findings concerning the subfamily Eremiainae in Africa are summarized to update SZCZERBAK`s (1975) catalogue of the African Sand Lizards. Furthermore, a key to the species and subspecies of the genus Pedioplanis is provided.
Meiri, S. (2008) -
Aim Body size is instrumental in influencing animal physiology, morphology, ecology and evolution, as well as extinction risk. I examine several hypotheses regarding the influence of body size on lizard evolution and extinction risk, assessing whether body size influences, or is influenced by, species richness, herbivory, island dwelling and extinction risk. Location World-wide. Methods I used literature data and measurements of museum and live specimens to estimate lizard body size distributions. Results I obtained body size data for 99% of the world`s lizard species. The body size–frequency distribution is highly modal and right skewed and similar distributions characterize most lizard families and lizard assemblages across biogeographical realms. There is a strong negative correlation between mean body size within families and species richness. Herbivorous lizards are larger than omnivorous and carnivorous ones, and aquatic lizards are larger than non-aquatic species. Diurnal activity is associated with small body size. Insular lizards tend towards both extremes of the size spectrum. Extinction risk increases with body size of species for which risk has been assessed. Main conclusions Small size seems to promote fast diversification of disparate body plans. The absence of mammalian predators allows insular lizards to attain larger body sizes by means of release from predation and allows them to evolve into the top predator niche. Island living also promotes a high frequency of herbivory, which is also associated with large size. Aquatic and nocturnal lizards probably evolve large size because of thermal constraints. The association between large size and high extinction risk, however, probably reflects a bias in the species in which risk has been studied.
Mertens, R. (1922) -
Observatoire National de l’Environment du Maroc “O.N.E.M” (1998) -
Pérez i de Lanuza, G. & Font, E. (2014) -
Ultraviolet (UV) vision and UV colour patches have been reported in a wide range of taxa and are increasingly appreciated as an integral part of vertebrate visual perception and communication systems. Previous studies with Lacertidae, a lizard family with diverse and complex coloration, have revealed the existence of UV-reflecting patches that may function as social signals. However, confirmation of the signalling role of UV coloration requires demonstrating that the lizards are capable of vision in the UV waveband. Here we use a multidisciplinary approach to characterize the visual sensitivity of a diverse sample of lacertid species. Spectral transmission measurements of the ocular media show that wavelengths down to 300 nm are transmitted in all the species sampled. Four retinal oil droplet types can be identified in the lacertid retina. Two types are pigmented and two are colourless. Fluorescence microscopy reveals that a type of colourless droplet is UV-transmitting and may thus be associated with UV-sensitive cones. DNA sequencing shows that lacertids have a functional SWS1 opsin, very similar at 13 critical sites to that in the presumed ancestral vertebrate (which was UV-sensitive) and other UV-sensitive lizards. Finally, males of Podarcis muralis are capable of discriminating between two views of the same stimulus that differ only in the presence/absence of UV radiance. Taken together, these results provide convergent evidence of UV vision in lacertids, very likely by means of an independent photopigment. Moreover, the presence of four oil droplet types suggests that lacertids have a four-cone colour vision system.
Pizzigalli, C. (2019) -
Mesalina is a genus of small xeric lizards currently comprising 19 species distributed from West Africa throughout the Saharo-Sindian deserts to the Indo-Iranian plateau. Previous phylogenetic studies highlighted the presence of cryptic diversity within the genus and described new Mesalina species from its eastern lineages. In this study, we investigated the taxonomy and systematics within the Mesalina olivieri species complex, focusing on the Atlantic Sahara (from Morocco to Mauritania). The species complex is currently represented by three recognised species, all of them present in this region: M. olivieri, M. pasteuri and M. simoni. Using an integrative taxonomy approach based on morphological (pholidotic, coloration and pattern) and molecular (one mtDNA and four nuDNA markers) datasets, we provide robust evidences for the existence of additional taxa within the M. olivieri complex is provided, including an undescribed species in Mauritania. Mesalina sp. nov. . All M. olivieri that cluster together with M. simoni were proposed to be included as subspecies of the latter (M. simoni ssp. nov.). The clade including Mesalina sp. nov. and M. simoni diverged from M. olivieri and M. pasteuri around 9.5 Mya whereas these two latter species separated 1 or 2 Mya later in the end of the Miocene. The combined analyses supported a new classification of the Mesalina olivieri species complex into four extant species. The new species is sympatric with M. pasteuri in Mauritania but it is phylogenetically and morphologically divergent from it. Species distribution modelling suggests that the new taxon occurs exclusively in the rocky areas of the Adrar Atar plateau and neighbouring regions. The relatively wide but fragmented distribution of Mesalina sp. nov. suggests that its conservation status is Least Concern (LC).
Pizzigalli, C. & Crochet, P.-A. & Geniez, P. & Martínez-Freiría, F. & Velo-Antón, G. & Brito, J.C. (2021) -
Numerous molecular studies emphasized how past climatic oscillations in the Sahara-Sahel have left strong imprints on current biodiversity patterns and identified the Atlantic coast and the Northwest African Mountains as refugia and speciation hotspots. Yet, the biodiversity inventory in the region is still far from complete. We use an integrative taxonomy framework to revise the systematics of the Mesalina olivieri species complex; integrating molecular, morphological, and environmental data, we evaluated levels of genetic and phenotypic differentiation among species/lineages and revised the species distribution limits of the M. olivieri complex, refining the distribution of Mesalina simoni, and Mesalina pasteuri. Our study confirmed one previously unidentified speciation event, leading to the description of Mesalina adrarensis sp. nov. Together with this new species, we also describe the south-western Moroccan populations of M. olivieri as Mesalina simoni saharae ssp. nov. Mesalina adrarensis sp. nov. is sympatric with M. pasteuri and parapatric with M. simoni saharae ssp. nov. in Mauritania and southern Morocco. Based on our revised taxonomy, M. simoni now includes most populations of the M. olivieri complex in Morocco, M. olivieri being restricted in Morocco to the east and southeast of the country. We also build on these results to provide further insight on the biogeography of North Africa. Our results point to a diversification of the complex during the late Miocene, that led to the formation of the four species M. simoni, M. olivieri, M. pasteuri, and M. adrarensis sp. nov. After these four speciation events, high intraspecific diversification processes occurred since the beginning of the Plio-Pleistocene transition, in parallel with the beginning of the humid and arid cycles. Through our phylogenetic analysis, we highlight the existence of high levels of undescribed intraspecific diversity in M. olivieri and M. pasteuri that will need to be addressed in future studies. Moreover, we uncover instances of cytonuclear discordances, stressing the need of considering both mitochondrial and nuclear DNA for integrative taxonomic studies to explore biodiversity.
Pous, P.de & Beukema, W. & Weterings, M. & Dümmer, I. & Geniez, P. (2011) -
The integration of spatial area prioritization algorithms and species distribution modelling has shown great promise in conservation planning in recent years. However, despite the fact that reptiles and amphibians have the highest threat status of all terrestrial vertebrates, these species are often under-represented in conservation planning. The Kingdom of Morocco possesses the richest and most varied herpetofauna in the Maghreb and the western Mediterranean, and is characterized by high species richness, endemism and number of European relict species. Despite the fact that Moroccan reptiles and amphibians have been the subject of numerous studies by a large number of international herpetologists since the beginning of the 20th century, few or none of these concerned their conservation. This study had three main objectives: (1) to identify those areas that harbour the highest species richness; (2) to evaluate the existing and proposed future ‘important biological and ecological sites’ (SIBES) conservation area network (CAN) with respect to their ability to protect the herpetofauna adequately; and (3) to identify priority areas into which the existing protected areas can be augmented. We used maximum-entropy species distribution modelling to run distribution models for 11 amphibian and 86 reptile species (27.6% endemics and 12.4% threatened) for which we had 2,170 single geographic records. A total of 97 models were used to create a richness map of the Moroccan her- petofauna and thereby detect both areas of high species richness and the distribution patterns of individual species. This map was subsequently used as a basis for performance evaluation of the CAN and area prioritization using the ConsNet conservation planning software initialized by ‘‘Rarity’’ first, while using representation targets of 5% and 10%. Additionally, the proposed future Moroccan CAN (SIBES) was evaluated in terms of its overlay and proximity with ConsNet solutions using visual interpretation and distance measurements in a GIS. Our results show that Moroccan herpetofauna is poorly protected under the existing and future CAN. Prioritization of areas shows that a major increase in conservation area is required to guarantee the persistence of individual herpetofauna species even with a global minimum representation target of only 10%. An increase of the existing CAN is especially needed along parts of the Atlantic coast, in the north-western Mediterranean region, on the north-eastern Moroccan coast, as well as in several areas in the Sahara, notably vast proportions of the Valle ́e du Haut and Bas Draˆa.
Szczerbak, N.N. (1975) -
Szczerbak, N.N. (1989) -
The present paper of N. N. SZCZERBAK was originally published in Russian as `Katalog afrikanskih Jascurok` by the Academy of Sciences, Institute of Zoology, Museum of Zoology, USSR, Kiev (83 pp., 30 maps) in 1975. Lists of synonyms, bibliography, maps and table of contents - all being parts of the original paper - have not been included in this translation which was carried out with the consent of the author by R. GÜNTHER (Berlin) and H. GRILLITSCH (Vienna). The English summary was taken over as provided in the original version. As a SHORT NOTE in this issue of HERPETOZOA subsequent to the translation comments and updated addenda by W. MAYER are provided indicated by [aa* bb* etc.] in the text.
Znari, M. & El Mouden, E.H. & Benfaida, H. & Boumezzough, A. (2000) -
Spatial and trophic resource partitioning among seven sympatric insectivorous lizard species was investigated in arid area in the central Jbilet mountains (Western Morocco) during spring 1995. Two foraging guilds are apparent: a specialist sit-and-wait (Agama impalearis, Tarentola mauritanica et Saurodaclylus brosseti) and a generalist one (Eumeces algeriensis, Chalcides polylepis, Acanthodaclylus erythrurus and Mesalina simoni). The studied lizard species differentiate from each other in substrate use relatively to their respective adaptive morphological traits. A. impalearis and T. mauritanica occur mainly in rocky areas, E. algeriensis and M. simoni appear mostly on rocky and pebbly-bare ground substrates, A. erythrurus and C. polylepis are found on sandy-pebbly substrates while S. brosseti occurs in pebbly soils. By contrast, there were large overlaps in the taxonomic composition of their diets which are numerically dominated by Formicidae, Isoptera, Coleoptera and Araneidae with different proportions according to lizard species. However, important prey-size differences between species allowed to reduce trophic overlap. A selectivity analysis of lizard diet revealed patterns of prey selection based on criteria inherent either to predator (foraging behaviour, morphological constraints) or prey (size, abundance and activity). Results suggest that spatial and trophic segregation along with taxonomic divergence make possible the coexistence of these lizard species.