| DNA analysis of the genus (KAPLI et al. 2013) led to completely unexpected results:
(1) A. cappadocica is paraphyletic in respect to A. yassujica while A. c. urmiana and A. yassujica are significantly more closely related in respect to the other subspecies of A. cappadocica. Within the latter, the ssp. schmidtlerorum were not genetically differentiated from ssp. muhtari *. Both are closely related to the nominate form, which together with A. c. wolteri represents their sister group. Furthermore, is the ssp. urmiana paraphyletic in respect to A. yassujica where the Turkish representatives are sister to all Iranian Apathya.
(2) The intraspecific distances of A. cappadocica are extremely high (higher than between clearly separated species of Podarcis !). Although no taxonomic changes are made in this publication, it is clear that the currently valid taxonomy will not uphold in this genus.
WERNER MAYER, 2015
* The originally used ssp. wolteri was corrected into muhtari (www.lacerta.de, 2019). |
Méhely, L. (1907) - Zur Lösung der muralis-Frage (Vorläufige Mitteilung). - Annales historico-naturales Musei nationalis hungarici, Budapest, 5 (1): 84-88. Arnold, E.N. & Arribas, O. & Carranza, S. (2007) - Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. - Zootaxa, 1430: 1-86. × DNA sequence indicates the Lacertidae contain two subfamilies, Gallotiinae and Lacertinae, the latter comprising two
monophyletic tribes, the Eremiadini of Africa and arid southwest and central Asia, and the Lacertini of Europe, northwest
Africa and southwest and east Asia. Relationships within the 108 species of Lacertini are explored using mtDNA
(291 bp cytochrome b; 329 bp 12S rRNA for 59 nominal species, and reanalysis of the data of Harris et al. 1998, and Fu
2000). The morphology of the tribe is reviewed and 64 of its characters (equivalent to 83 binary ones) also used to assess
relationships. The Lacertini are assigned to 19 monophyletic units of 1 to 27 species, recognised here as the following
genera (contents are indicated in brackets): Algyroides, Anatololacerta gen. nov. (L. danfordi group), Apathya (L. cappadocica
group), Archaeolacerta (L. bedriagae), Dalmatolacerta gen. nov. (L. oxycephala), Darevskia (L. saxicola group),
Dinarolacerta gen. nov. (L. mosorensis), Hellenolacerta gen. nov. (L. graeca), Iberolacerta (L. monticola group), Iranolacerta
gen. nov. (L. brandtii and L. zagrosica), Lacerta s. str. (sand and green lizards, L. agilis group), Parvilacerta gen.
nov. (L. parva and L. fraasii), Phoenicolacerta gen. nov. (L. laevis group), Podarcis (wall lizards), Scelarcis (L. perspicillata),
Takydromus (Asian grass lizards), Teira (L. dugesii), Timon (ocellated lizards, L. lepida group) and Zootoca (L.
vivipara). Both mtDNA and morphology indicate that Lacerta and Timon are sister taxa, and DNA suggests further possible
relationships among genera (Fig. 1, p. 6). Neither DNA nor morphology indicates that the archaeolacertas (sometimes
formalised as Archaeolacerta sens. lat.) form a clade. Instead, they are representatives of an ecomorph associated
with living on rock exposures and using the narrow crevices that these contain.
The Lacertidae probably arose in the European area, with the Gallotiinae later reaching Northwest Africa and the
Canary Islands, and the ancestor of the Eremiadini invading Africa in the mid-Miocene. The Lacertini spread through
much of their present European range and diversified, perhaps largely by repeated vicariance, around 12–16 My ago,
producing the ancestors of the present mainly small-bodied genera, which then underwent often modest speciation. Three
units spread more widely: the Lacerta-Timon clade of large-bodied lizards probably dispersed earliest, followed by Algyroides
and then Podarcis. Overall, European Lacertidae show a pattern of repeated spread, often accompanied by restriction
of previous groups. Expansion of Lacertini may have displaced earlier lacertid lineages from all or much of Europe;
while spread of Podarcis may have restricted many other genera of Lacertini. The earlier expansion of the Lacerta-Timon
clade probably did not have this effect, as difference in adult body size restricted competitive interaction with other
forms. Several invasions of more distant areas also occurred: of East Asia by Takydromus over 10 My ago, and more
recently of northwest Africa by Podarcis, Scelarcis and Timon, and Madeira by Teira.
Relationships within the Eremiadini estimated from both mtDNA, and nDNA differ considerably from those based
on morphology. They indicate relatively mesic forms may have diversified widely across Africa and given rise to at least
three independent invasions of arid habitats. MtDNA also indicates that Lacerta andreanskyi belongs in the Eremiadini
and may occupy a basal position there. It is assigned to a further new genus, Atlantolacerta gen. nov. Kapli, P. & Botoni, D. & Ilgaz, Ç. & Kumlutaş, Y. & Avcı, A. & Rastegar-Pouyani, N. & Fathinia, B. & Lymberakis, P. & Ahmadzadeh, F. & Poulakakis, N. (2013) - Molecular phylogeny and historical biogeogtraphy of the Anatolian lizard Apathya (Squamata, Lacertidae). - Molecular Phylogenetics and Evolution, 66 (3): 992-1001. × Apathya is a lacertid genus occurring mainly in south-east Turkey and its adjacent regions (part of Iran and Iraq). So far two morphological species have been attributed to the genus; A. cappadocica (with five subspecies, A. c.cappadocica, A. c.muhtari, A. c.schmidtlerorum, A. c. urmiana and A. c.wolteri) and A.yassujica. The first species occupies most of the genus’ distribution range, while A. yassujica is endemic of the Zagros Mountains. Here, we explored Apathya’s taxonomy and investigated the evolutionary history of the species by employing phylogenetic and phylogeographic approaches and using both mitochondrial (mtDNA) and nuclear markers. The phylogenetic relationships and the genetic distances retrieved, revealed that Apathya is a highly variable genus, which parallels its high morphological variation. Such levels of morphological and genetic differentiation often exceed those between species of other Lacertini genera that are already treated as full species, suggesting the necessity for a taxonomic revision of Apathya. The phylogeographical scenario emerging from the genetic data suggests that the present distribution of the genus was determined by a combination of dispersal and vicariance events between Anatolia and Southwest Asia dating back to the Miocene and continuing up to the Pleistocene. Key geological events for the understanding of the phylogeography of the genus are the movement of the Arabian plate that led to the configuration of Middle East (orogenesis of the mountain ranges of Turkey and Iran) and the formation of Anatolian Diagonal. Mayer, W. (2015) - Die Taxa der Familie Lacertidae – eine kommentierte Liste. (Zuletzt aktualisiert am 04.07.2015). - lacerta.de. 62 pp.
|