AG magazine (in print)
Online magazine (pdf)
Online articles (html)
Literature- and poster projects
of the real lizards, family Lacertidae
Eremias montana RASTEGAR-POUYANI & RASTEGAR-POUYANI, 2001
Bahmani, Z. & Rastegar-Pouyani, N. & Gharzi, A. (2011) -
During field work in western regions of the Iranian Plateau in the Zagros Mountains, a single specimen belonging to the genus and subgenus Eremias Fitzinger, 1834 was collected from the highlands of Badr and Parishan (at about 2466 m elevation) in south of the city of Qorveh, Kurdistan Province, western Iran (47°, 47’ E; 35°, 04’ N) in July 2010. This is the first record of occurrence of Eremias (Eremias) montanus from Kurdistan Province.
Baig, K.J. & Masroor, R. (2006) -
A new species of Eremias has been described from the Cholistan Desert of Pakistan. It constitutes the first record of the genus Eremias from the Oriental (Indian) region. The species has been named Eremias cholistanica, after the Cholistan Desert of Pakistan. This striped desert lacerta is not only different from all its congeners in several morphological characteristics but has been collected from an area distant from the previous known range of Eremias.
Gholamifard, A. (2011) -
Iran contains 36 named endemic reptile species in 17 genera and seven families. The most endemic and speciose family is the Gekkonidae, followed by the Lacertidae. These two families collectively dominate with 22 species (or 60.1%) of the total endemic herpetofauna. Twenty one endemics are known only from a single location or restricted area within a single physiographic region. An analysis of endemicity is given in terms of systematics and distribution.
Kafash, A. & Ashrafi, S. & Ohler, A. (2018) -
Little is known about altitudinal distribution of lizards in Iran. In the present study we studied distribution pattern of members of family Lacertidae along the eleveatinal gradient in Iran. To determine environmental drivers of distribution pattern of 48 lizard species, all known valid members of family Lacertidae, along elevational gradient in Iran. Firstly, we classified Iran digital elevation model (DEM) based on 100m intervals, that resulted in 56 altitudinal bands and number of species in each band was recorded. Secondly, we extracted mean value of following variables; altitude, slop, area, solar radiation index (SRI), normalized differences vegetation index (NDVI), annual precipitation, precipitation of wettest month, precipitation of driest month precipitation, precipitation of wettest quarter, precipitation of driest quarter, and precipitation of warmest quarter, and using VIF measure correlated variables were removed. Finally, we performed a multiple regression and found that area and precipitation of warmest quarter are the most important drivers of distribution pattern of family Lacertidae along elevational gradient in Iran. General distribution pattern of family Lacertidae was unimodal and maximum number of species living from 1475 m to 1675 m.
انوشه کفاش؛ سهراب اشرفی ؛ آنماری اوهلر (1397) -
اطلاعات اندکی در ارتباط با توزیع ارتفاعی سوسماران در ایران در دسترس است. در حالی که تعیین مناطق ارتفاعی با بیشترین تعداد گونه میتواند برای انتخاب مناطق حفاظت شده مفید باشد. در مطالعه حاضر الگوی توزیع ارتفاعی 48 گونه از سوسماران ایران متعلق به خانواده لاسرتیده در امتداد شیبهای ارتفاعی مورد بررسی قرار گرفت. به منظور تعیین الگوی توزیع ارتفاعی اعضای خانواده لاسرتیده مدل رقومی ارتفاع کشور به طبقات ارتفاعی صد متری تقسیم شد و تعداد گونه در هر طبقه ارتفاعی ثبت شد. ارزش عددی متغیرهای شیب، مساحت، ارتفاع، شاخص تشعشع حرارتی، شاخص نرمال شده پوشش گیاهی، بارش سالیانه، بارش در مرطوب ترین ماه سال، بارش در خشک ترین ماه سال، بارش در مرطوب ترین فصل سال، بارش در سردترین فصل سال، بارش در خشک ترین فصل سال و بارش در گرم ترین فصل سال در هر طبقه ارتفاعی از طریق جعبه ابزار Raster استخراج شده و بعد از بررسی میزان همبستگی بین این متغییرها با استفاده از معیار VIF متغیرهای با همبستگی بالا حذف شدند. سپس با اجرای آنالیز رگرسیون چندگانه مهمترین متغییرهای موثر بر توزیع ارتفاعی گونه های خانواده لاسرتیده دو متغییر مساحت و بارش در گرمترین فصل سال شناسایی شد. الگوی کلی توزیع سوسماران خانواده لاسرتیده در امتداد شیب های ارتفاعی به صورت تک اوجی بوده و بیشترین تعداد گونه ها در ارتفاع 1475 تا 1675حضور دارند.
Kazemi, S.M. & Hosseinzadeh, M.S. (2020) -
Aims The Zagros Mountains are a part of the 20th global hotspot, the Irano-Anatolian biodiversity hotspot. In this study, we aim to develop a comprehensive checklist of endemic herpetofauna species in the Zagros Mountains as one of the biodiversity hotspot regions, to provide more information about this important area and the necessity of conservation programs to protect it. Materials & Methods The Zagros Mountains, with an area of about 533,543km2, ranges from Turkey and Iraq to western and southwestern Iran along the eastern edge of the Persian Gulf. A list of endemic species has been collected from the literature review. Findings This region contains 3 species and 7 subspecies of endemic amphibians belonging to three genera and two families, the Salamandridae (8) and the Bufonidae (2). Neurergus and Calliopersa are endemic to this hotspot. There are 40 species and 6 subspecies of endemic reptiles belonging to 24 genera and 10 families. The families with the greatest number of endemic species are the Gekkonidae, Phyllodactylidae, and Colubridae. Three genera, Asaccus, Mediodactylus, and Eirenis, dominate the region, with 32 endemic taxa. There are also two endemic genera, Parsigecko and Lakigecko. Conclusion Many amphibians in the Zagros Mountains, especially all the species of the genus Neurergus, are categorized in IUCN (the International Union for Conservation of Nature) Red List and CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora). The habitats of the Zagros Mountains herpetofauna, especially those of endangered and endemic species, should be protected and managed to maintain or restore populations of the declining species.
Leviton, A.E. & Anderson, S.C. (2010) -
Meiri, S. (2008) -
Aim Body size is instrumental in influencing animal physiology, morphology, ecology and evolution, as well as extinction risk. I examine several hypotheses regarding the influence of body size on lizard evolution and extinction risk, assessing whether body size influences, or is influenced by, species richness, herbivory, island dwelling and extinction risk. Location World-wide. Methods I used literature data and measurements of museum and live specimens to estimate lizard body size distributions. Results I obtained body size data for 99% of the world`s lizard species. The body size–frequency distribution is highly modal and right skewed and similar distributions characterize most lizard families and lizard assemblages across biogeographical realms. There is a strong negative correlation between mean body size within families and species richness. Herbivorous lizards are larger than omnivorous and carnivorous ones, and aquatic lizards are larger than non-aquatic species. Diurnal activity is associated with small body size. Insular lizards tend towards both extremes of the size spectrum. Extinction risk increases with body size of species for which risk has been assessed. Main conclusions Small size seems to promote fast diversification of disparate body plans. The absence of mammalian predators allows insular lizards to attain larger body sizes by means of release from predation and allows them to evolve into the top predator niche. Island living also promotes a high frequency of herbivory, which is also associated with large size. Aquatic and nocturnal lizards probably evolve large size because of thermal constraints. The association between large size and high extinction risk, however, probably reflects a bias in the species in which risk has been studied.
Mikaili, P. & Shayegh, J. (2011) -
The etymology of the reptiles, especially the lizards of Iran has not been completely presented in other published works. Iran is a very active geographic area for any animals, and more especially for lizards, due to its wide range deserts and ecology. We have attempted to ascertain, as much as possible, the construction of the Latin binomials of all Iranian lizard species. We believe that a review of these names is instructive, not only in codifying many aspects of the biology of the lizards, but in presenting a historical overview of collectors and taxonomic work in Iran and Middle East region. We have listed all recorded lizards of Iran according to the order of the scientific names in the book of Anderson, The Lizards of Iran. All lizard species and types have been grouped under their proper Families, and then they have been alphabetically ordered based on their scientific binominal nomenclature. We also examined numerous published works in addition to those included in the original papers presenting each binomial.
Mozaffari, O. & Ahmadzadeh, F. & Parham, J. F. (2011) -
We describe a new species of Eremias lacertid from the Alborz Mountain range in northern Iran (Tehran Province). Eremias papenfussi n. sp. is part of the Eremias subgenus (or morphotype) by virtue of lacking lateral fringes on the fourth toe and color pattern. It can be further differentiated from previously described species assigned to this morphotype by the absence of distinctly keeled upper caudal scales, gular scales that do not extend to the second inframaxiallary scales, color pattern, and scale counts. Eremias papenfussi is found on rocky mountain slopes of the Alborz where it is presumed to have a much broader distribution than demonstrated by the available specimens. Of the 15 species of Eremias known from Iran, E. papenfussi is the fifth species known to inhabit rocky mountain slopes along with E. strauchi, E. lalezharica, E. montanus and E. novo.
Mozaffari, O. & Parham, J.F. (2007) -
A new species of lacertid lizard, Eremias kavirensis sp.nov., is described from Isfahan Province in central Iran. The new species differs from all other known Iranian Eremias by having a subocoluar scale that does not reach the mouth, fringed toes, scales on flank distinctly larger than those of back, two rows of tibial scales, and its coloration. The known distribution of this distinctive new species is restricted to the Maranjaab sand dunes, Kavir Desert (Dasht-e-Kavir), Isfahan Province, Iran.
Noori, S. & Hawlitschek, O. & Oldeland, J. & Rajaei, H. & Husemann, M. & Simoes, M. (2021) -
The global struggle to conserve as many species as possible with limited resources requires an improvement of our knowledge on the distribution of biodiversity. In Iran, the state of knowledge is poor for most groups of organisms, except few vertebrate groups and vascular plants. Reptiles are one of the best known, most diverse vertebrate groups in Iran, with a high rate of endemism (ca. 29%), but distribution patterns and related environmental drivers remain poorly understood. In the present study, based on a large publicly available dataset, we use general additive modelling (GAM) to identify explanatory variables for species richness of reptiles in Iran. Results indicate heterogeneity parameters (range +entropy) as the variables with the highest explanatory values. Based on the grid cells of the predicted environmental richness, using hotspot analysis, we suggest seven hotspots of reptile diversity (HRDs) across the country. Our results corroborate the previously recognized HRDs and detect three additional ones, located alongside the major mountain ranges around the central deserts plateau, particularly in the Zagros Mountains. Four of the largest HRDs (ca. 90%) situate within the Irano-Anatolian and Caucasus global biodiversity hotspot. In addition, our results reveal a large gap between identified HRDs and the current network of protected areas (PAs) in the country. While three of the detected HRDs in this study are partially touched (ca. 18%) by the PA network, overall, these areas are only covered by less than 10%. Therefore, the effectiveness of the current PAs for the protection of the reptile diversity of Iran is questionable.
Pérez i de Lanuza, G. & Font, E. (2016) -
Many animals display complex colour patterns that comprise several adjacent, often contrasting colour patches. Combining patches of complementary colours increases the overall conspicuousness of the complex pattern, enhancing signal detection. Therefore, selection for conspicuousness may act not only on the design of single colour patches, but also on their combination. Contrasting long- and short-wavelength colour patches are located on the ventral and lateral surfaces of many lacertid lizards. As the combination of long- and short-wavelength-based colours generates local chromatic contrast, we hypothesized that selection may favour the co-occurrence of lateral and ventral contrasting patches, resulting in complex colour patterns that maximize the overall conspicuousness of the signal. To test this hypothesis we performed a comparative phylogenetic study using a categorical colour classification based on spectral data and descriptive information on lacertid coloration collected from the literature. Our results demonstrate that conspicuous ventral (long wavelength-based) and lateral (short wavelength-based) colour patches co-occur throughout the lacertid phylogeny more often than expected by chance, especially in the subfamily Lacertini. These results suggest that selection promotes the evolution of the complex pattern rather than the acquisition of a single conspicuous colour patch, possibly due to the increased conspicuousness caused by the combination of colours with contrasting spectral properties.
Rahbar, A. & Karami, M. & Rastegar-Pouyani, N. & Mohammadi, A. (2011) -
Eremias montanus belonging to the family Lacertidae and is an endemic lizard of Iran. Endemic species because only certain geographical areas there are many values are for academic studies. In this study to find these regions to make a lot of Hamedan province were studied, but observed only in Alvand Mountain in 18 km Hamedan province. The research was performed from early April until late November in 2009; while this species spend hibernation and samples were collected by line transect method. In total 13 samples were collected the 10 specimens were mature and 3 specimens were immature and morphological, ecological and ethological studies were conducted on them. In this study, for the first time this species was detected in Hamedan province, whereas reported only in previous studies of Siah dareh Village in Kermanshah province.
Rastegar-Pouyani, N. & Kami, H.G. & Rajabizadeh, M. & Shafiei, S. & Anderson, S.C. (2008) -
An updated checklist of the herpetofauna of Iran is presented based on records of amphibian and reptile species whose presence has been confirmed in Iran as a result of extensive field expeditions, examination of herpetological collections, literature review, and personal communications from researchers. The herpetofauna of Iran consists of 13 species and five subspecies of frogs and toads belonging to five genera and four families, eight species of salamanders belonging to four genera and two families, nine species and six subspecies of turtles, terrapins and tortoises belonging to nine genera and six families, one species of crocodile, one species of amphisbaenian, more than 125 species of lizards belonging to 36 genera and eight families as well as 79 species of snakes belonging to 37 genera and six families
Rastegar-Pouyani, N. & Rastegar-Pouyani, E. (2001) -
Rastegar-Pouyani, N. & Rastegar-Pouyani, E. (2006) -
A new and distinctive form belonging to the genus and subgenus Eremias Fitzinger, 1834 is reported from the highlands of Alvand Mountains, Hamedan Province, western Iran at about 2700 m elevation. It is easily distinguished from all the other species of the typical subgenus (E. velox, E. persica, E. strauchi, E. nigrolateralis E. lalezharica E. afghanistanica, E. regeli, E. suphani, and E. nikolskit) by having a variable number of postmentals (4-5 pairs); smaller size, and a distinctive color pattern. Furthermore, it can be distinguished by having a combination of characters against any of the species in the typical subgenus. Further work, using both morphological arid molecular techniques, is now being carried out on this new form in order to determine its exact taxonomic and phylogenetic status. Systematics of the genus Eremias is shortly discussed.
Safaei-Mahroo, B. & Ghaffari, H. (2021) -
Safaei-Mahroo, B. & Ghaffari, H. & Fahimi, H. & Broomand, S. & Yazdanian, M. & Najafi Majd, E. & Hosseinian Yousefkhani, S.S. & Rezadeh, E. & Hosseinzadeh, M.S. & Nasrabadi, R. & Rajabizadeh, M. & Mas (2015) -
We present an annotated checklist for a total 241 reptiles and 22 amphibians including 5 frogs, 9 toads, 7 newts and salamanders, 1 crocodile, 1 worm lizard, 148 lizards, 79 snakes and 12 turtles and tortoises, includes the most scientific literature up to August 2014 and also based on several field surveys conducted in different Provinces of Iran from 2009 to 2014. We present an up-to-dated checklist of reptiles and amphibians in Iran. We provide a comprehensive listing of taxonomy, names, distribution and conservation status of all amphibians and reptiles of Iran. This checklist includes all recognized named taxa, English names for classes, orders, families, species, subspecies along with Persian names for species, including indication of native and introduced species. For the first time we report two non-native introduced reptiles from natural habitats of Iran. Of the total 22 species of amphibians in Iran, 6 (27.2%) are endemic and of the total 241 species of reptiles, 55 (22.8%) are endemic. Of the 22 amphibians species in Iran, 3 (13%) are Critically Endangered, 2 (9%) are Vulnerable and of the 241 reptile species 3 (1.2%) are Critically Endangered, 4 (1.6%) are Endangered and 10 (4.1%) are Vulnerable. Accordingly, this paper combines significant aspects of taxonomy, common names, conservation status and distribution of the Iranian herpetofauna.
Sindaco, R. & Jeremčenko, V.K. (2008) -
This book shows a comprehensive picture of the reptiles, excluding snakes, living in Europe, North Africa, Middle and Near East and Central Asia. The bulk of the book is an annotated checklist and a distributional atlas of approx 500 species of lizards, crocodiles, turtles and terrapins, and amphisbaenians, living in the Western Palearctic. Information on distribution, subspecies, chorotype and main references are provided for each species, as well as 226 colour maps showing the global distribution of the species on a grid of one degree. For each species map the bibliographic and original sources (more than 850 sources are listed) are indicated. A further 83 maps show the distribution of all genera and main species groups of Palearctic reptiles. Beside the checklist and the atlas, in some additional chapters the following arguments are treated: Materials and methods; status of knowledge on the Palearctic fauna; composition of the Western Palearctic reptile fauna (including a statement on biodiversity and species richness); descriptive biogeography (including a discussion on the Palearctic region boundaries based on reptile distribution and the herpeto-geographic sectors of the Western Palearctic); conservation status. A list of more than 730 references quoted in the text and high quality colour plates including photos of the most of the supraspecific taxa living in the study area completes the book.
Šmíd, J. & Moravec, J. & Kodym, P. & Kratochvil, L. & Hosseinian Yousefkhani, S.S. & Frynta, D. (2014) -
We present a comprehensive summary of the distribution of the lizards of Iran accompanied by an annotated checklist. The updated maps of distribution of all 146 species of 41 genera of 11 families are based on all available bibliographic records, catalogues of museum collections and our own field observations. The final dataset used for the distribution maps contains 8525 georeferenced records and cover 41% of the country when plotted on a grid of 0.25° × 0.25° resolution. The dataset is publicly accessible through GBIF portal (http://www.gbif.org/dataset/7db4f705-61ae-4c6e-9de2-06674e7d46b2). Following the latest biogeographic division of the country, ~53% of the species (76 species) inhabit the Iranian Province, ~41% (60 species) the Western Asian mountain transition zone, ~9% (13 species) the Turanian Province, and ~18% (27 species) the Arabian Province. In addition, ~2% (3 species) reach Iran from the Indo-Malay biogeographic region and ~2% (3 species) are believed to have been introduced to Iran by humans. Endemic species (46) represent ~32% of the known species diversity. The most species-rich family of lizards in Iran is Lacertidae with 47 species, followed by Gekkonidae (41), Agamidae (18), Scincidae (15), Phyllodactylidae (10), Sphaerodactylidae (4), Eublepharidae and Uromastycidae (3), Anguidae and Varanidae (2), and Trogonophidae with one representative.