Mertens, R. (1954) - Description of Pedioplanis rubens. - In: “Neue Eidechsen aus Südwest-Afrika”. – Senckenbergiana, Frankfurt/Main, 34 (4/6): 175-183. Makokha, J.S. & Bauer, A.M. & Mayer, W. & Matthee, C.A. (2007) - Nuclear and mtDNA-based phylogeny of southern African sand lizards, Pedioplanis (Sauria: Lacertidae). - Molecular Phylogenetics and Evolution, 44 (2): 622-633. × The diversity of lacertid lizards in Africa is highest in the southern African subcontinent, where over two-thirds of the species are endemic. With eleven currently recognized species, Pedioplanis is the most diverse among the southern African genera. In this study we use 2200 nucleotide positions derived from two mitochondrial markers (ND2 and 16S rRNA) and one nuclear gene (RAG-1) to (i) assess the phylogeny of Pedioplanis and (ii) estimate divergence time among lineages using the relaxed molecular clock method. Individual analyses of each gene separately supported different nodes in the phylogeny and the combined analysis yielded more well supported relationships. We present the first, well-resolved gene tree for the genus Pedioplanis and this is largely congruent with a phylogeny derived from morphology. Contrary to previous suggestions Heliobolus/Nucras are sister to Pedioplanis. The genus Pedioplanis is monophyletic, with P. burchelli/P. laticeps forming a clade that is sister to all the remaining congeners. Two distinct geographic lineages can be identified within the widespread P. namaquensis; one occurs in Namibia, while the other occurs in South Africa. The P. undata species complex is monophyletic, but one of its constituent species, P. inornata, is paraphyletic. Relationships among the subspecies of P. lineoocellata are much more complex than previously documented. An isolated population previously assigned to P. l. pulchella is paraphyletic and sister to the three named subspecies. The phylogeny identifies two biogeographical clades that probably diverged during the mid-Miocene, after the development of the Benguella Current. This probably led to habitat changes associated with climate and, in conjunction with physical barriers (Great Escarpment), contributed towards speciation within the genus Pedioplanis. Childers, J.L. & Kirchhof, S. & Bauer, A.M. (2021) - Lizards of a different stripe: phylogenetics of the Pedioplanis undata species complex (Squamata, Lacertidae), with the description of two new species. - Zoosystematics and Evolution, 97 (1): 249–272. × The lacertid genus Pedioplanis is a moderately speciose group of small-bodied, cryptically-colored lizards found in arid habitats throughout southern Africa. Previous phylogenetic work on Pedioplanis has determined its placement within the broader context of the Lacertidae, but interspecific relations within the genus remain unsettled, particularly within the P. undata species complex, a group largely endemic to Namibia. We greatly expanded taxon sampling for members of the P. undata complex and other Pedioplanis, and generated molecular sequence data from 1,937 bp of mtDNA (ND2 and cyt b) and 2,015 bp of nDNA (KIF24, PRLR, RAG-1) which were combined with sequences from GenBank resulting in a final dataset of 455 individuals. Both maximum likelihood and Bayesian analyses recover similar phylogenetic results and reveal the polyphyly of P. undata and P. inornata as presently construed. We con- firm that P. husabensis is sister to the group comprising the P. undata complex plus the Angolan sister species P. huntleyi + P. haackei and demonstrate that P. benguelensis lies outside of this clade in its entirety. The complex itself comprises six species including P. undata, P. inornata, P. rubens, P. gaerdesi and two previously undescribed entities. Based on divergence date estimates, the P. undata species complex began diversifying in the late Miocene (5.3 ± 1.6 MYA) with the most recent cladogenetic events dating to the Plio- cene (2.6 ± 1.0 MYA), making this assemblage relatively young compared to the genus Pedioplanis as a whole, the origin of which dates back to the mid-Miocene (13.5 ± 1.8 MYA). Using an integrative approach, we here describe Pedioplanis branchi sp. nov. and Pedioplanis mayeri sp. nov. representing northern populations previously assigned to P. inornata and P. undata, respectively. These entities were first flagged as possible new species by Berger-Dell’mour and Mayer over thirty years ago but were never formally described. The new species are supported chiefly by differences in coloration and by unique amino acid substitutions. We provide comprehensive maps depicting historical records based on museum specimens plus new records from this study for all members of the P. undata complex and P. husabensis. We suggest that climatic oscillations of the Upper Miocene and Pliocene-Pleistocene era in concert with the formation of biogeographic barriers have led to population isolation, gene flow restrictions and ultimately cladogenesis in the P. undata complex.
|