Mertens, R. (1954) - Description of Pedioplanis gaerdesi. - In: “Neue Eidechsen aus Südwest-Afrika”. – Senckenbergiana, Frankfurt/Main, 34 (4/6): 175-183. Makokha, J.S. & Bauer, A.M. & Mayer, W. & Matthee, C.A. (2007) - Nuclear and mtDNA-based phylogeny of southern African sand lizards, Pedioplanis (Sauria: Lacertidae). - Molecular Phylogenetics and Evolution, 44 (2): 622-633. × The diversity of lacertid lizards in Africa is highest in the southern African subcontinent, where over two-thirds of the species are endemic. With eleven currently recognized species, Pedioplanis is the most diverse among the southern African genera. In this study we use 2200 nucleotide positions derived from two mitochondrial markers (ND2 and 16S rRNA) and one nuclear gene (RAG-1) to (i) assess the phylogeny of Pedioplanis and (ii) estimate divergence time among lineages using the relaxed molecular clock method. Individual analyses of each gene separately supported different nodes in the phylogeny and the combined analysis yielded more well supported relationships. We present the first, well-resolved gene tree for the genus Pedioplanis and this is largely congruent with a phylogeny derived from morphology. Contrary to previous suggestions Heliobolus/Nucras are sister to Pedioplanis. The genus Pedioplanis is monophyletic, with P. burchelli/P. laticeps forming a clade that is sister to all the remaining congeners. Two distinct geographic lineages can be identified within the widespread P. namaquensis; one occurs in Namibia, while the other occurs in South Africa. The P. undata species complex is monophyletic, but one of its constituent species, P. inornata, is paraphyletic. Relationships among the subspecies of P. lineoocellata are much more complex than previously documented. An isolated population previously assigned to P. l. pulchella is paraphyletic and sister to the three named subspecies. The phylogeny identifies two biogeographical clades that probably diverged during the mid-Miocene, after the development of the Benguella Current. This probably led to habitat changes associated with climate and, in conjunction with physical barriers (Great Escarpment), contributed towards speciation within the genus Pedioplanis. Conradie, W. & Measey, G.J. & Branch, W.R. & Tolley, K. (2012) - Revised phylogeny of African sand lizards (Pedioplanis), with the description of two new species from south-western Angola - African Journal of Herpetology, Johannesburg, South Africa, 61 (2): 1-22. × Although reptile diversity in Africa is high, it is poorly represented in Angola, with just 257 species known. Despite its greater surface area and habitat diversity Angola has significantly lower lacertid lizard diversity than adjacent Namibia. This is particularly notable in African sand lizards (Pedioplanis), where 10 species (two endemic) are known from Namibia but only two are recorded from adjacent Angola. Pedioplanis benguelensis was described from Angola, but its taxonomic status is problematic and it was previously synonymised with P. namaquensis. All other Angolan Pedioplanis were referred to Namibian P. undata, although this taxon is now known to comprise a complex of at least five different species and the relationship of Angolan material to this complex has not been assessed. In this study, we investigated the phylogenetic placement of Angolan Pedioplanis using two mitochondrial (ND2 and 16S) and one nuclear (RAG-1) markers. A Bayesian analysis was conducted on 21 samples from Angola, combined with existing data for 45 individuals from GenBank and three additional samples from central Namibia. The phylogeny demonstrates that P. benguelensis is a valid species and that it is not the sister taxon to P. namaquensis with which it has been morphologically confused. In addition, Angolan lacertids previously referred to P. undata are not conspecific with any of the Namibian or South African species in that complex. Rather, there is strong support for the presence in Angola of additional species of Pedioplanis, which form a wellsupported sister clade to the P. undata complex (sensu stricto) of Namibia and two ofwhich are described herein. These discoveries highlight the need for further biodiversity surveys in
Angola, as similar increases in species diversity in other Angolan taxa might be found given sufficient investment in biodiversity surveys. Childers, J.L. & Kirchhof, S. & Bauer, A.M. (2021) - Lizards of a different stripe: phylogenetics of the Pedioplanis undata species complex (Squamata, Lacertidae), with the description of two new species. - Zoosystematics and Evolution, 97 (1): 249–272. × The lacertid genus Pedioplanis is a moderately speciose group of small-bodied, cryptically-colored lizards found in arid habitats throughout southern Africa. Previous phylogenetic work on Pedioplanis has determined its placement within the broader context of the Lacertidae, but interspecific relations within the genus remain unsettled, particularly within the P. undata species complex, a group largely endemic to Namibia. We greatly expanded taxon sampling for members of the P. undata complex and other Pedioplanis, and generated molecular sequence data from 1,937 bp of mtDNA (ND2 and cyt b) and 2,015 bp of nDNA (KIF24, PRLR, RAG-1) which were combined with sequences from GenBank resulting in a final dataset of 455 individuals. Both maximum likelihood and Bayesian analyses recover similar phylogenetic results and reveal the polyphyly of P. undata and P. inornata as presently construed. We con- firm that P. husabensis is sister to the group comprising the P. undata complex plus the Angolan sister species P. huntleyi + P. haackei and demonstrate that P. benguelensis lies outside of this clade in its entirety. The complex itself comprises six species including P. undata, P. inornata, P. rubens, P. gaerdesi and two previously undescribed entities. Based on divergence date estimates, the P. undata species complex began diversifying in the late Miocene (5.3 ± 1.6 MYA) with the most recent cladogenetic events dating to the Plio- cene (2.6 ± 1.0 MYA), making this assemblage relatively young compared to the genus Pedioplanis as a whole, the origin of which dates back to the mid-Miocene (13.5 ± 1.8 MYA). Using an integrative approach, we here describe Pedioplanis branchi sp. nov. and Pedioplanis mayeri sp. nov. representing northern populations previously assigned to P. inornata and P. undata, respectively. These entities were first flagged as possible new species by Berger-Dell’mour and Mayer over thirty years ago but were never formally described. The new species are supported chiefly by differences in coloration and by unique amino acid substitutions. We provide comprehensive maps depicting historical records based on museum specimens plus new records from this study for all members of the P. undata complex and P. husabensis. We suggest that climatic oscillations of the Upper Miocene and Pliocene-Pleistocene era in concert with the formation of biogeographic barriers have led to population isolation, gene flow restrictions and ultimately cladogenesis in the P. undata complex.
|