| Acanthodactylus lineomaculatus DUMÉRIL & BIBRON, 1839 Acanthodactylus erythrurus lineomaculatus SALVADOR, 1982 Acanthodactylus erythrurus tingitanus (fide SALVADOR, 1982) |
Duméril, A.M.C. & Bibron, G. (1839) - Livre quatrième: De l`ordre des lézards ou des sauriens - Seconde sous-famille. Autosaures Coelodontes. - Erpétologie Générale ou Histoire Naturelle Complète des Reptiles, 5: 153-317. Fonseca, M.M. & Brito, J.C. & Paulo, O.S. & Carretero, M.A. & Harris, D.J. (2009) - Systematic and phylogeographical assessment of the Acanthodactylus erythrurus group (Reptilia: Lacertidae) based on phylogenetic analyses of mitochondrial and nuclear DNA - Molecular Phylogenetics and Evolution, 51 (2): 131-142. × We have used mitochondrial 12S rRNA, 16S rRNA and nuclear β-fibrinogen (intron 7) sequences to investigate the phylogenetic and phylogeographic relationships between Acanthodactylus erythrurus group species (except for A. boueti). The phylogenetic analyses of the Acanthodactylus genus did not cluster A. guineensis and A. savignyi with the remaining species of the group (A. blanci, A. lineomaculatus and A. erythrurus). Within the A. erythrurus group, the results of the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) showed a complex phylogeny with geographic structure, but it was not congruent with the present taxonomy. Some taxonomic units, such as A. blanci, A. lineomaculatus, A. e. atlanticus and A. e. belli did not form monophyletic genetic units. The application of a molecular clock suggested that the uplift of the Atlas Mountains in the mid-late Miocene and the reopening of the Strait of Gibraltar could be major biogeographic events responsible for the genetic differentiation in the group. Additionally, diverse micro-evolutionary patterns due to the recent contraction/expansion phases of the habitats in North Africa associated with the high dispersal capabilities of these lizards could be related to the complex phylogenetic patterns observed. Tamar, K. & Carranza, S. & Sindaco, R. & Moravec, J. & Trape, J.-F. & Meiri, S. (2016) - Out of Africa: Phylogeny and biogeography of the widespread genus Acanthodactylus (Reptilia: Lacertidae). - Molecular Phylogenetics and Evolution, 103: 6-18. × Acanthodactylus lizards are among the most diverse and widespread diurnal reptiles in the arid regions spanning from North Africa across to western India. Acanthodactylus constitutes the most species-rich genus in the family Lacertidae, with over 40 recognized species inhabiting a wide variety of dry habitats. The genus has seldom undergone taxonomic revisions, and although there are a number of described species and species-groups, their boundaries as well as their interspecific relationships are largely unresolved. We constructed a multilocus phylogeny, combining data from two mitochondrial (12S, cytb) and three nuclear (MC1R, ACM4, c-mos) markers for 302 individuals belonging to 36 known species, providing the first large-scale time-calibrated molecular phylogeny of the genus. We evaluated phylogenetic relationships between and within species-groups, and assessed Acanthodactylus biogeography across its known range. Acanthodactylus cladogenesis is estimated to have originated in Africa due to vicariance and dispersal events from the Oligocene onwards. Radiation started with the separation into three clades: the Western and scutellatus clades largely distributed in North Africa, and the Eastern clade occurring mostly from Arabia to south-west Asia. Most Acanthodactylus species diverged during the Miocene, possibly as a result of regional geological instability and climatic changes. We support most of the current taxonomic classifications and phylogenetic relationships, and provide genetic validity for most species. We reveal a new distinct blanfordii species-group, suggest new phylogenetic positions (A. hardyi, A. masirae), and synonymize several species and subspecies (A. lineomaculatus, A. boskianus khattensis and A. b. nigeriensis) with their phylogenetically closely-related species. We recommend a thorough systematic revision of taxa exhibiting high levels of intraspecific variability as well as clear evidence of phylogenetic complexity such as A. guineensis, A. grandis, A. dumerilii, and A. senegalensis and the pardalis and erythrurus species-groups.
|